Answer:
3.052 × 10^24 particles
Explanation:
To get the number of particles (nA) in a substance, we multiply the number of moles of the substance by Avogadro's number (6.02 × 10^23)
The mass of Li2O given in this question is as follows: 151grams.
To convert this mass value to moles, we use;
moles = mass/molar mass
Molar mass of Li2O = 6.9(2) + 16
= 13.8 + 16
= 29.8g/mol
Mole = 151/29.8g
mole = 5.07moles
number of particles (nA) of Li2O = 5.07 × 6.02 × 10^23
= 30.52 × 10^23
= 3.052 × 10^24 particles.
<span> 2 hydrogen atoms attached to an oxygen atom.</span>
The gas laws describe and predict the behavior of gases with an explanation and experimental data
So the given statement is False.
2) The volume of gas can be calculated based on Avagadro's law
It states that the volume of a gas is directly proportional or varies with the moles of the gas. Higher the moles more the volume, condition is the pressure and temperature are constants in the two conditions
Thus as here the pressure and temperature of nitrogen gas is kept constant
V α moles
or

Where
V1 = 6 l
n1 = 0.50 mol
V2 = ?
n2 = 0.75 mol
On putting values
V2 = 6 X 0.75 / 0.5 = 9 L
so resulting volume of the gas will be 9L
277.79 atm is the calculated gas pressure.
The ideal gas is a fictitious concept used to study how real gases behave by comparing them to their deviations. The pressure-temperature rules are followed by an ideal gas.
177 atm is the initial pressure. The starting temperature is 298 K (25 °C = 25 + 273 °C).
195°C = 195+273
= 468K is the final temperature.
The pressure temperature relation illustrated below can be used to get the final pressure.
P1/T1 = P2/T1
= P1T2/T1
= 177 atm 468 K /298 K
= 277.97 atm
The final pressure is therefore 277.97 atm.
Learn more about Pressure here-
brainly.com/question/4578923
#SPJ4