Whereas ionic bonds join metals to non-metals, metallic bonding joins a bulk of metal atoms. ... Sodium metal is therefore written as Na, not Na+. ... Both of these factors increase the strength of the bond still further. ... Heat capacity: This is explained by the ability of free electrons to move about the solid.
The statement that is not true about the exothermic reaction is that the potential energy of the product is higher than the potential energy of the reactant. That is option D.
<h3>What is an exothermic reaction?</h3>
An exothermic reaction is the reaction that releases heat to the environment which causes increase in the immediate environment.
The characteristics of exothermic reaction include the following:
- Activation energy of the forward reaction is smaller than the activation energy of the reverse reaction.
- Heat is released to the environment during reaction.
Since there is release of heat, the product will have a lower energy than the reactant.
Therefore, the statement that is not true about the exothermic reaction is that the potential energy of the product is higher than the potential energy of the reactant.
Learn more about exothermic reaction here:
brainly.com/question/2924714
#SPJ1
Its obviously D like what are you stupid lol jk don’t take it to heart kid
The
equation for the photosynthesis reaction in which carbon dioxide and water
react to form glucose is .
The hear reaction is the difference between the bond dissociation energies in
the products and the bond dissociation energies of the reactants
The
reactant molecules have 12 C = O, 12 H - O bonds while the product molecules
have 5 C - C, 7 C – O, 5 H – O, and 6 O = O bonds. The average bond
dissociation energies for the bonds involved in the reaction are 191 for C = O,
112 for H – O, 83 C –C, 99 C – H, 86 C – O, 119 O = O.
Substitute
the average bond dissociation energies in the equation for and
calculate as follows
=
[12 (C=O) + 12 (H-O)] – [5(C-C) + 7(C-H) + 7 (C-O) + 5(H-O) + 6(O=O)]
=
[12x191 kcal/mol + 12x112 kcal//mol] – [5x83 kcal/mol + 7x99 kcal/mol + 7x86
kcal/mol + 5x112 kcal/mol + 6x119 kcal/mol]
=
3636 kcal/mol – 2984 kcal/mol = 652 kcal/mol x 4.184 Kj/1kcal = 2.73x10^3 kJ/mol
So,
enthalpy change for the reaction is 652 kcal/mol or 2.73x10^3 kJ/mol
<span> </span>
Answer:
Highest pH(most basic)
Sr(OH)2(aq)
KOH (aq)
NH3(aq)
HF (aq)
HClO4(aq)
Lowest pH(most acidic)
Explanation:
The concentration of H+ ion will determine the pH of a solution. The pH actually reflects the ratio of H+ ion and OH- since both of them can combine into water. Solution with more H+ ion will have a lower pH and called acidic, while more OH- will have high pH and be called basic. Strong acid/base will be ionized more than weak acid/base.
Sr(OH)2(aq) = strong base, release 2 OH- ion per mole
KOH (aq) = Strong base, release 1 OH- per mole
NH3(aq) = weak base, release less than 1 OH- per mole
HF (aq) =strong acid, release 1 H+ per mole
HClO4(aq) = stronger acid, release 1 H+ per mole