Answer:
119 kCal per serving.
Explanation:
The heat energy necessary to elevates water's temperature from 23.4°C to 37.9°C can be calculated by the equation below:
Q = mcΔT
Q: heat energy
m: mass in g
c: specific heat capacity in cal/g°C
ΔT = temperature variation in °C
m is the mass of water, considering the density of water to be 1g/mL, 100 mL of water weights 100g. Therefore:
Q = 100 g x 1.00 cal/g°C x (37.9 - 23.4)°C
Q = 1450 cal
1450 cal ____ 0.341 g peanuts
x ____ 28 g peanuts
x = 119061.58 cal
This means that the cal from fat per serving of peanuts is at least 119 kCal.
The three isomers of pentane have different structural formulas.
This is Bohrs model for potassium
Answer:
To prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
Explanation:
Molarity of a solute in a solution denotes number of moles of solute dissolved in 1 L of solution.
So, moles of urea in 1.00 L of a 2.0 M urea solution = 2 moles
We know, number of moles of a compound is the ratio of mass to molar mass of that compound.
So, mass of 2 moles of urea = 
Therefore to prepare 1.00 L of 2.0 M urea solution, we need to dissolve 120 g of urea in enough water to produce a total of 1.00 L solution
So, option (C) is correct.