I am a girl and i have a virgina and im 13 tho so dont touch me lolz mark brainly
I think it's a) 1st Newton's law... so sorry if it's wrong...
Answer:
Approximately
, assuming friction between the vehicle and the ground is negligible.
Explanation:
Let
denote the mass of the vehicle. Let
denote the initial velocity of the vehicle. Let
denote the spring constant (needs to be found.) Let
denote the maximum displacement of the spring.
Convert velocity of the vehicle to standard units (meters per second):
.
Initial kinetic energy (
) of the vehicle:
.
When the vehicle is brought to a rest, the elastic potential energy (
) stored in the spring would be:
.
By the conservation of energy, if the friction between the vehicle and the ground is negligible, the initial
of the vehicle should be equal to the
of the vehicle. In other words:
.
Rearrange this equation to find an expression for
, the spring constant:
.
Substitute in the given values
,
, and
:

Answer:
(a) They must have same direction
(b) It is not necessary for them to have same magnitudes
Explanation:
(a)
Momentum is a vector quantity. It is the product of mass (scalar) and velocity (vector). Thus, if the direction of velocity is changed, then as a result the direction of momentum will also change or its magnitude or component in the same direction will change. Hence, for the two objects to have same momentum, the directions of their velocities must also be the same.
(b)
Since, the momentum is product of velocity and mass. It is possible that two bodies of different masses with different velocities might have same momentum, provided the direction of their velocities is same.
For example, take a body of mass 4 kg moving with speed 5 m/s. It will have a momentum of 20 N.s. Now, consider another body of mass 2 kg, moving with speed 10 m/s. It will also have a momentum of 20 N.s.
Thus, it is not necessary for two objects to have same magnitude of velocity to have same momentum.