While falling, both the sheet of paper and the paper ball experience air resistance. But the surface area of the sheet is much more than that of the spherical ball. And air resistance varies directly with surface area. Hence the sheet experiences more air resistance than the ball and it falls more slowly than the paper ball.
Hope that helps!
when the apple moves in a horizontal circle, the tension force in the string provides the necessary centripetal force to move in circle. the tension in the string is given as
T=mv²/r
where T = tension force in the string , m = mass of the apple
v = speed of apple , r = radius of circle.
clearly , tension force depends on the square of the speed. hence greater the speed, greater will be the tension force.
at some point , the speed becomes large enough that it makes the tension force in the string becomes greater than the tensile strength of the string. at that point , the string breaks
Answer: 10Nm or 10J
Explanation:
Given the following :
Force (f) = 5
Distance (d) = 2m
Calculate the kinetic energy assuming no friction
Work done = force × distance
Work done = 5N × 2m = 10Nm
Recall :
Work done = ΔK.E ( change in kinetic energy)
Therefore, kinetic energy of the book after sliding = ΔK. E, which is equal to work done.
Hence, K. E of book after sliding is 10Nm