Buoyant force is the force that is a result from the pressure exerted by a fluid on the object. We calculate this value by using the Archimedes principle where it says that the upward buoyant force that is being exerted to a body that is immersed in the fluid is equal to the fluid's weight that the object has displaced. Buoyant force always acts opposing the direction of weight. We calculate as follows:
Fb = W
Fb = mass (acceleration due to gravity)
Fb = 64.0 kg ( 9.81 m/s^2)
Fb = 627.84 kg m/s^2
Therefore, the buoyant force that is exerted on the diver in the sea water would be 627.84 N
Answer:
The answer is the second option.
Explanation:
This is a higher temperature than Onnes's experiment, and it will allow for a broader use of superconductors.
See projectiles are very simple unless you understand its core concepts....projectile is nothing just mixture of upward motion and horizontal motion....
THE KEY IS FORGET THE NAME PROJECTILE...ITS JUST HORIZONTAL MOTION + VERTICAL MOTION
You are talking about make sure's and pearl substance I thought you was talking about mix in with something
There are several possibilities. Here are a few that occur to me:
-- If Point-A is the summit of Pike's Peak, he may feel somewhat
short of breath.
-- If Point-A is his grandmother's house, he may feel a great sense
of pleasant anticipation.
-- If Point-A is his office on Monday morning, then he may feel
a tightening sensation in his chest.;
-- If Point-A is his home on Friday afternoon, then he feels the
effects of a slow and steady drop in his blood pressure.
I finer point might be put to it if we had any idea of where
Point-A is, and what it represents in the grand scheme
of things.