Answer:
The light bulb would glow brighter.
Explanation:
Resistance is the opposition to current flow and in Ohm's law is represented as a constant in the equation V = IR with V the voltage, I the current and R the resistance.
Now let's assume we are in a series circuit that has only one path for electricity to follow to better explain what would happen to a light bulb if the voltage increased but the resistance stayed the same. Based on ohm's law equation, the voltage is directly proportional to the current and the resistance is constant. An increase in the voltage is therefore an increase in the current which flows throught the light bulb making it glow brighter while a decrease in voltage results in a decrease in current flowing through the light bulb making it dim.
To find the change in centripetal acceleration, you should first look for the centripetal acceleration at the top of the hill and at the bottom of the hill.
The formula for centripetal acceleration is:
Centripetal Acceleration = v squared divided by r
where:
v = velocity, m/s
r= radium, m
assuming the velocity does not change:
at the top of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 0.25 m
= 81 m/s^2
at the bottom of the hill:
centripetal acceleration = (4.5 m/s^2) divided by 1.25 m
= 16.2 m/s^2
to find the change in centripetal acceleration, take the difference of the two.
change in centripetal acceleration = centripetal acceleration at the top of the hill - centripetal acceleration at the bottom of the hill
= 81 m/s^2 - 16.2 m/s^2
= 64.8 m/s^2 or 65 m/s^2
Explanation:
the other 40% is used to power the 60% making it only capable of 60% efficiency
The frequency of the
scattered photon decreases or it will be lower compare to the frequency of
incident photon. An x-ray photon scatters in one direction after a collision
and some energy is transferred to the electron as it recoils in another
direction resulting to have less energy in the scattered photon. In addition, the
frequencies will also depend on the differences of the angle at which the
scattered photon leaves the collision and this incident is called Compton Effect.
The linear speed of the ladybug is 4.1 m/s
Explanation:
First of all, we need to find the angular speed of the lady bug. This is given by:

where
T is the period of revolution
The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:
T = 1 s
Therefore, the angular speed is

Now we can find the linear speed of the ladybug, which is given by

where:
is the angular speed
r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation
Substituting, we find

Learn more about angular speed:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly