1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
3 years ago
12

The temperature of a body of water influences _____

Physics
2 answers:
Dvinal [7]3 years ago
8 0

Answer

The temperature of a body of water influences<u> by surrounding temprature or the temprature of air which blows upon it.</u>

<u>Explanation</u>

If the temperature of air which blow upon the surface of water is high that time there will be transfer of heat from air to surface water due to which temperature of water body will rise. Similarly if the temperature of air which blow upon the surface of water is low that time there will be transfer of heat from  water bodies to surrounding air due to which temperature of water body will fall.

Maslowich3 years ago
5 0
The temperature of the air above it
You might be interested in
A. What is the RMS speed of Helium atoms when the temperature of the Helium gas is 343.0 K? (Possibly useful constants: the atom
kkurt [141]

Answer:

(a) 1462.38 m/s

(b) 2068.13 m/s

Explanation:

(a)

The Kinetic energy of the atom can be given as:

K.E = (3/2)KT

where,

K = Boltzman's Constant = 1.38 x 10⁻²³ J/k

K.E = Kinetic Energy of atoms = 343 K

T = absolute temperature of atoms

The K.E is also given as:

K.E = (1/2)mv²

Comparing both equations:

(1/2)mv² = (3/2)KT

v² = 3KT/m

v = √[3KT/m]

where,

m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg

v = RMS Speed of Helium Atoms = ?

Therefore,

v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]

<u>v = 1462.38 m/s</u>

(b)

For double temperature:

T = 2 x 343 K = 686 K

all other data remains same:

v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]

<u>v = 2068.13 m/s</u>

8 0
3 years ago
Describe and explain how the movement and arrangement of the particles in a block of ice change as the ice melts to form liquid
-BARSIC- [3]

Answer:

Ice is water in solid phase, in this phase, the particles are very close together and relatively in fixed positions.

As the temperature starts to increase (thermal energy), also does the kinetic energy of the particles (so we have a change from thermal energy to kinetic energy), so they start to move "more", and the position of the particles starts to be less "fixed". There is a point where the particles have enough energy, and this point is where the phase of the water changes from solid to liquid phase (the fusion point). After this point the water can not hold his shape, and takes the shape of the container where it is.

4 0
3 years ago
A single-phase electrical load draws 600KVA at 0.6 power factor lagging. a) Find the real and reactive power absorbed by the loa
Whitepunk [10]

Answer:

(a). The reactive power is 799.99 KVAR.

(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.

Explanation:

Given that,

Power factor = 0.6

Power = 600 kVA

(a). We need to calculate the reactive power

Using formula of reactive power

Q=P\tan\phi...(I)

We need to calculate the \phi

Using formula of \phi

\phi=\cos^{-1}(Power\ factor)

Put the value into the formula

\phi=\cos^{-1}(0.6)

\phi=53.13^{\circ}

Put the value of Φ in equation (I)

Q=600\tan(53.13)

Q=799.99\ kVAR

(b). We draw the power triangle

(c). We need to calculate the reactive power of a capacitor to be connected across the load to raise the power factor to 0.95

Using formula of reactive power

Q'=600\tan(0.95)

Q'=9.94\ KVAR

We need to calculate the difference between Q and Q'

Q''=Q-Q'

Put the value into the formula

Q''=799.99-9.94

Q''=790.05\ KVAR

Hence, (a). The reactive power is 799.99 KVAR.

(c). The reactive power of a capacitor to be connected across the load to raise the power factor to 0.95 is 790.05 KVAR.

8 0
3 years ago
Why you so sussy bakugou?
ruslelena [56]

Answer:

IM CRYIFNNNAEWJN

Explanation:

6 0
3 years ago
Read 2 more answers
What is the frequency of a wave that has a wavelength of 0.39 m and a speed
gogolik [260]

Answer:

<h3>The answer is option B</h3>

Explanation:

The frequency of a wave can be found by using the formula

f =  \frac{c}{ \lambda}  \\

where

c is the velocity

From the question

wavelength = 0.39 m

c = 86 m/s

We have

f =  \frac{86}{0.39}  \\  = 220.512820...

We have the final answer as

<h3>200 Hz</h3>

Hope this helps you

7 0
3 years ago
Other questions:
  • Which body exerts the force that propels the sprinter, the blocks or the sprinter?
    9·1 answer
  • Mary travelled 70 miles/hour due north.
    11·2 answers
  • Explain what chain rule is . workout appropriate examples to support your explanation.
    5·1 answer
  • 5 characteristics of an Electromagnetic wave
    7·1 answer
  • Help please! Science!
    11·2 answers
  • Name at least three physical properties of the bowling<br> ball.
    15·2 answers
  • What happens to a muscle when you exercise it?
    6·2 answers
  • A disk of radius 25 cm spinning at a rate of 30 rpm slows to a stop over 3 seconds. what is the angular acceleration?
    14·1 answer
  • Please help!!!!!!!!!!
    8·1 answer
  • Matter that organisms require for their life processes are
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!