Answer:

Explanation:
given,
total deflection = 4.12 cm
Electric field = 1.1 ×10³ V/m
plate length = 6 cm
distance between them = 12 cm
using formula

q = 1.6 × 10⁻¹⁹ C
m = 9.11 x 10⁻³¹ kg
d = 0.06 m
L = 0.12 m

v_0 = 6496355.63 m/s




Explanation:
<h3>p = mv</h3>
- <em>p</em> denotes momentum
- <em>m</em> denotes mass
- <em>v</em> denotes velocity
→ p = 3 kg × 3 m/s
→ <u>p</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>kg</u><u>.</u><u>m</u><u>/</u><u>s</u>
<u>Option</u><u> </u><u>D</u><u> </u><u>is</u><u> </u><u>corre</u><u>ct</u><u>.</u>
Answer:
<h2>30 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 15 × 2
We have the final answer as
<h3>30 N</h3>
Hope this helps you
Answer:
h = 3.1 cm
Explanation:
Given that,
The volume of a oil drop, V = 10 m
Radius, r = 10 m
We need to find the thickness of the film. The film is in the form of a cylinder whose volume is as follows :

So, the thickness of the film is equal to 3.1 cm.
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:
