Answer:
I answered first, give me brainliest
Explanation:
Answer:
Option (D)
Explanation:
Phosphorylation can be simply defined as the addition of a phosphate group to an organic and inorganic molecule. This process helps in regulating the processes that occur in the cells. It leads to the growth and development of cells and this process is efficiently carried out with the help of enzymes like kinase. It also plays an important role in transferring the signals within the cells, synthesis, and functioning of proteins within the cells, and storing as well as releasing of energy.
Thus, the correct answer is option (D).
A polar molecule<span> has a net dipole as a result of the opposing charges (i.e. having partial positive and partial negative charges) from </span>polar<span> bonds arranged asymmetrically. Water (H</span>2<span>O) is an example of a </span>polar molecule<span> since it has a slight positive charge on one side and a slight negative charge on the other.</span>
Answer:
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
Structure Number Two would likely be the most stable structure.
<h3>2)</h3>
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
The N atom is the one that is "likely" to be attracted to an anion. See explanation.
Explanation:
When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:
.
For example, for the N atom in structure one of the first question,
- N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
- This N atom is connected to only 1 chemical bond.
- There are three pairs, or 6 electrons that aren't in a chemical bond.
The formal charge of this N atom will be
.
Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.
Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.
<h3>2)</h3>
Similarly,
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.
Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.