Answer:
a) the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Explanation:
Given that;
Gravitational acceleration g = 9.81 m/s²
Mass m = 5 kg
Extension of the spring X = 50 mm = 0.05 m
Spring constant k = ?
we know that;
mg = kX
5 × 9.81 = k(0.05)
k = 981 N/m
a)
Given that; Acceleration of the elevator a = 2 m/s² upwards
Extension of the spring in this situation = X1
Force exerted by the spring = F
we know that;
ma = F - mg
ma = kX1 - mg
we substitute
5 × 2 = 981 × X1 - (5 ×9.81 )
X1 = 0.06019 m
X1 = 60.19 mm
Therefore the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
B)
Acceleration of the elevator = a
The spring is relaxed i.e, it is not exerting any force on the box.
Only the weight force of the box is exerted on the box.
ma = mg
a = g
a = 9.81 m/s² downwards.
Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
I think the answer will be B tell me if it’s right after
In short, when light illuminates a piece of metal, the light kicks off electrons from the metal’s surface and these electrons can be detected as a change in the electric charge of the metal or as an electric current. Hence the name: photo for light and electric for the current. The explanation behind this simple phenomenon opened the door to revolutionary modern physics concepts regarding the composition of light, quantum mechanics, and what is now referred to as the “wave-particle duality” of nature. The wave-particle duality of nature is perhaps one of the greatest mysteries of our universe and a very interesting philosophical subject! Your goal in this lab is to reproduce the photoelectric effect for yourselves and to understand how it demonstrates the particle behavior of light.
Answer:
d. R4
Explanation:
Generally, the flow of current is always from the positive sign to the negative sign. In the resistors R1, R2, and R3, the direction of flow of current is from the positive sign to the negative sign. However, in the resistor R4, the direction of the flow of current is different from the conventional method. Therefore, the resistor R4 is marked wrongly.
We need a system to use those air vibrations to push against the surface of the inner ear fluid.