Answer:
The datapoint 9.0 ppm is outlier at the 90% confidence level.
Explanation:
The old data has following values
mean=10.5 mm
standard deviation 0.2 mm
Now the mean of new values is calculated as following

So the value as 9.0 ppm can be considered easily as outlier in this regard.
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.
This next statement is a big deal. It should be up on a board, surrounded
by flashing red and yellow lights, and hung on the wall of every Science
classroom. Although we never see it in our daily lives, it's fundamental to
the workings of the universe, and it's also Newton's first law of motion:
<em>Without friction, it doesn't take <u>ANY</u> force to keep a moving object
moving. </em><em>Force is only required to <u>change</u> the object's speed, or to
<u>change</u> the direction </em><em>in which it's moving.</em>
The answer to the question is: On a level road, and neglecting any friction,
the engine doesn't have to supply ANY force to keep the car going at the
same speed.
Answer:
I just need to get points soorry
Explanation: