Answer:
2.1406 ×
m/sec
Explanation:
we know that energy is always conserved
so from the law of energy conservation

here V is the potential difference
we know that mass of proton = 1.67×
kg
we have given speed =50000m/sec
so potential difference 
now mass of electron =9.11×
so for electron

so the velocity of electron will be 2.1406×
m/sec
Answer:
For areas marked X, Y, Z, X is attractive only, Y has a very small range, and Z is attractive and repulsive
Explanation:
Solution
Given that:
From the question stated, Anna drew a diagram to compare forces that are strong and weak.
Now,
We are to find which labels are grouped in areas marked as X, Y, Z respectively.
Thus,
For X, Y, Z it is marked as:
X: Always attractive or attractive only
Y: Very small range
Z: Repulsive and attractive
Answer:
λ = 482.05 nm
Explanation:
The diffraction phenomenon and the diffraction grating is described by the expression
d sin θ = m λ
where d is the distance between two consecutive slits, λ the wavelength and m an integer representing the order of diffraction
in this case they indicate the distance between slits, the angle and the order of diffraction
λ =
d sin θ / m
let's calculate
λ = 1.00 10⁻⁶ sin 74.6 / 2
λ = 4.82048 10⁻⁷ m
Let's reduce to nm
λ = 4.82048 10⁻⁷ m (10⁹ nm / 1 m)
λ = 482.05 nm
Answer:
Aeronautical science is the science of flight, and this field relates to careers involved with the design and development of aircraft. Aeronautical engineers study how flight may be achieved within the earth's atmosphere and use that knowledge to pilot or design airplanes.
Explanation:
Answer:
1.35208 m/s
Explanation:
Speed of the boat = 0.75 m/s
Distance between the shores = 100 m
Time = Distance / Speed

Time taken by the boat to get across is 133.33 seconds
Point C is 150 m from B
Speed = Distance / Time

Velocity of the water is 1.125 m/s
From Pythagoras theorem

So, the man's velocity relative to the shore is 1.35208 m/s