<span>Well the Wheels would help to move the box but you need to have in mind that if the box is heavy you must make sure that it does not role-down because of how heavy the box is</span>
<span>The ball with an initial velocity of 2 m/s rebounds at 3.6 m/s
The ball with an initial velocity of 3.6 m/s rebounds at 2 m/s
There are two principles involved here
Conservation of momentum and conservation of energy.
I'll use the following variables
a0, a1 = velocity of ball a (before and after collision)
b0, b1 = velocity of ball b (before and after collision)
m = mass of each ball.
For conservation of momentum, we can create this equation:
m*a0 + m*b0 = m*a1 + m*b1
divide both sides by m and we get:
a0 + b0 = a1 + b1
For conservation of energy, we can create this equation:
0.5m(a0)^2 + 0.5m(b0)^2 = 0.5m(a1)^2 + 0.5m(b1)^2
Once again, divide both sides by 0.5m to simplify
a0^2 + b0^2 = a1^2 + b1^2
Now let's get rid of a0 and b0 by assigned their initial values. a0 will be 2, and b0 will be -3.6 since it's moving in the opposite direction.
a0 + b0 = a1 + b1
2 - 3.6 = a1 + b1
-1.6 = a1 + b1
a1 + b1 = -1.6
a0^2 + b0^2 = a1^2 + b1^2
2^2 + -3.6^2 = a1^2 + b1^2
4 + 12.96 = a1^2 + b1^2
16.96 = a1^2 + b1^2
a1^2 + b1^2 = 16.96
The equation a1^2 + b1^2 = 16.96 describes a circle centered at the origin with a radius of sqrt(16.96). The equation a1 + b1 = -1.6 describes a line with slope -1 that intersects the circle at two points. Those points being (a1,b1) = (-3.6, 2) or (2, -3.6). This is not a surprise given the conservation of energy and momentum. We can't use the solution of (2, -3.6) since those were the initial values and that would imply the 2 billiard balls passing through each other which is physically impossible. So the correct solution is (-3.6, 2) which indicates that the ball going 2 m/s initially rebounds in the opposite direction at 3.6 m/s and the ball originally going 3.6 m/s rebounds in the opposite direction at 2 m/s.</span>
Answer:
0.7 secs
Explanation:
In this question, the speed does not change as the mass changes. So we can use
Δ<em>t=Δ∨x/χgμ............................equ 1</em>
To stop, the final speed will be 0
Therefore,
<em>Δvx=vf-vt</em>
Δvx=0-4m/s
= -4m/s
Now substitute the various values in equ 1
Δ<em>t=Δ∨x/χgμ</em>
Δ<em>t= -</em>4m/s/(9.8m/s∧2) (0.6)
Δ<em>t=</em>0.7 secs
Chemical change, we can't change the bread back the way it was before
Hope this helps!
Answer:
The total displacement from the starting point is 1.5 m.
Explanation:
You need to sum and substract, depending on the movement (to the right, sum; to the left, substract).
First, it moves 4.3 m right and return 1.1 m. So the new distance from the starting point is 3.2 m.
Second, it moves 6.3 m right, so the new distance is 9.5 m.
Finally it moves 8 m to the left, so 9.5 m - 8 m= 1.5 m.
Summarizing, at the end the squirrel is 1.5 m from its starting point.