Answer:
Option : KBr + I -> KBr+I
Explanation:
Single-replacement reaction or single displacement reactions are a type of chemical reactions in which a whole compound reacts with an element in such a way that the element takes place of one of the compound's own elements and sets it free.
If we talk about KBr and I displacement reaction is not possible among these because Iodine is less reactive than Bromine that is why it will not react with KBr or replace Br.
KBr + I -> KBr+ I
Potassium Bromide + Iodine -> Potassium bromide + Iodine
Hope it help!
Answer:
The volume of solution in liters required to make a 0.250 M solution from 3.52 moles of solute is 14.08 liters of solution
Explanation:
The question relates to the definition of the concentration of a solution which is the number of moles per liter (1 liter = 1 dm³) of solution
Therefore we have;
The concentration of the intended solution = 0.250 M
Therefore, the number of moles per liter of the required resolution = 0.250 moles
Therefore, the concentration of the required solution = 0.250 moles/liter
The volume in liters of the required solution that will have 3.52 moles of the solute is given as follows;
The required volume of solution = The number of moles of the solute/(The concentration of the solution)
∴ The required volume of solution = 3.52 moles/(0.250 moles/liter) = 14.08 liters
The required volume of solution to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Therefore the number of liters required to make a 0.250 M solution from 3.52 moles of solute = 14.08 liters.
Answer:
X represents oxygen and Y represents carbon dioxide.
Explanation:
Because in respiration, you consume oxygen and make carbon dioxide whereas, in photosynthesis, the equation is reversed and you use carbon dioxide and make oxygen and glucose.
Mass of CO₂ produced : 58.67 g
<h3>Further explanation</h3>
A reaction coefficient is a number in the chemical formula of a substance involved in the reaction equation. The reaction coefficient is useful for equalizing reagents and products.
Reaction
CS₂ + 3O₂ -------> CO₂ + 2SO₂
mol of CO₂ based on mol of O₂ as a limiting reactant(CS₂ as an excess reactant)
From the equation, mol ratio of mol CO₂ : mol O₂ = 1 : 3, so mol CO₂ :

mass CO₂ (MW= 44 g/mol) :

Answer:
Below:
Explanation:
To calculate an energy change for a reaction: add together the bond energies for all the bonds in the reactants - this is the 'energy in' add together the bond energies for all the bonds in the products - this is the 'energy out.
Hope it helps....
It's Muska