Answer:
This tells us the radial velocity of the object and that the object is approaching or coming towards us.
Explanation:
Certain chemicals radiate with particular wavelengths or colors when their temperature is raised or when they are charged electrically. Also observable are dark strokes separating the spectrum known as absorption lines
These spectral lines of chemicals are well known as stated above and from the phenomenon of Doppler effect, spectroscopy can be used to detect the movement of a distant object by the change of the emitted frequency of the wavelength
The Doppler effect is used in calculating the radial velocity of a distant object due to the fact that an approaching object compresses its emitted signal wavelength while a receding object has a longer wavelength than normal
Explanation:
I can't guess it properly
Answer:
There were originally 8 atoms of Potassium-40.
Explanation:
The half-life of a radioactive material is the time taken for half the original material to decay or the time required for a quantity of the radioactive substance to reduce to half of its initial value.
If the original material formed without any Argon-40, it means that the atoms originally present were Potassium-40 atoms.
Presently, there are 7 Argon-40 atoms for every 1 of Potassium-40, we can deduce the number of half-lifes the Potassium-40 has undergone as follows :
After one half-life, (1/2) there will be one Potassium-40 atom for every Argon-40 atom.
After a second half life, 1/2 × 1/2 = 1/4: there will be one Potassium-40 atom for every three atoms of Argon-40.
After a third half-life, 1/4 × 1/2 = 1/8: there will be one Potassium-40 atom for every 7 atoms of Argon-40.
Since there are 1/8 atoms of Potassium-40 presently, there were originally 8 atoms of Potassium-40.