Yes it may or may not be depending on the angle of the ramp. But if nothing is specified then it must be related to acceleration as friction is neglected.
Answer: the object should be overcome by buoyancy and rise in the fluid.
Explanation:
Explanation:
The runner runs for a total time of
\Delta t=10.0 min= 600 sΔt=10.0min=600s
The energy converted by the runner during this time is equal to the power of the runner times the total time:
E=P \Delta t=400 W \cdot 600 s =2.4 \cdot 10^5 JE=PΔt=400W⋅600s=2.4⋅10
5
J
Answer:
426.84 m
Explanation:
initial velocity u = 0
time t = 3.3 s
distance travelled s = 53.4 m
acceleration due to gravity = g
s = ut + 1/2 g t²
53.4 = 0 + 1/2 g x 3.3²
g = 9.8 m /s²
For the whole length of fall
distance travelled = h
total time = 6.6 + 3.3 = 9.9 s
h = ut + 1/2 g t²
u again = 0
h = .5 x 9.8 x 9.9²
= 480.24 m
distance travelled in last 6.6 s
= 480.24 - 53.4
= 426.84 m