Answer:
The film thickness is 4.32 * 10^-6 m
Explanation:
Here in this question, we are interested in calculating the thickness of the film.
Mathematically;
The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;
ΔN = (2L/λ) (n-1)
where λ is the wavelength of the light used
Let’s make L the subject of the formula
(λ * ΔN)/2(n-1) = L
From the question ΔN = 8 , λ = 540 nm, n = 1.5
Plugging these values, we have
L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m
Parfocal is the term used to describe a microscope that maintains focus when the objective lenses are replaced.
<h3>
What is the name of the objective lens ?</h3>
For observing minute features within a specimen sample, a high-powered objective lens, often known as a "high dry" lens, is perfect. You can see a very detailed image of the specimen on your slide thanks to the 400x total magnification that a high-power objective lens and a 10x eyepiece provide.
The four objective lenses on your microscope are for scanning (4x), low (10x), high (40x), and oil immersion (100x).
The first-stage lens used to create a picture from electrons leaving the specimen is referred to as the "objective lens." The objective lens is the most crucial component of the imaging system since the quality of the images is determined by how well it performs (resolution, contrast, etc.,).
To learn more than objective lens , visit
brainly.com/question/17307577
#SPJ4
answer is 36
because the formulae of momentum is
mass×velocity
Answer:
μ = 0.725
Explanation:
This problem refers to Newton's second law.
F = ma
Let's write the equations on each axis
Y Axis
N-W = 0
N = W
N = mg
X axis
F-fr = ma
With the body not started moving its acceleration is zero
F-fr = 0
F = fr
The friction force equation is
fr = μ N
fr = μ m g
Let's replace and calculate
F = μ m g
μ = F / mg
μ = 321 /45.2 9.8
μ = 0.725
Classically, gravitational attraction is due to the masses of objects. It is inversely proportional to the square of the distances between the objects.
Magnetic attraction is due to the magnetism in objects which is due to uncompensated electron spins in certain atoms. The force due to magnetism less easy to put into one equation than gravity since magnetic fields can have different shapes, but the simplest one (the dipolar field) is inversely proportional to the cube of the distance between the magnetic dipoles.