1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TEA [102]
3 years ago
12

For phyics again , pls !!!

Physics
1 answer:
CaHeK987 [17]3 years ago
3 0

Answer: same

Explanation: They both weigh a kilogram and there is no friction

You might be interested in
An opera singer who is a baritone, lowers his pitch and raises his voice for a song. Which best describes how the resulting soun
Usimov [2.4K]

Answer: 3.

Explanation:

The correct answer is a higher amplitude and lower frequency. Since an opera singer is lowering his pitch it means that he is creating higher amplitude and because he is raising his voice for a song with that higher amplitude he is creating lower frequency.

8 0
2 years ago
A graph titled Distance as a Function of Time with horizontal axis time (seconds) and vertical axis distance (meters). A straigh
yanalaym [24]

Answer:

3 m

Explanation:

6 0
2 years ago
Read 2 more answers
Three point charges are arranged along the x-axis. Charge q1 = +3.00 uC is at the origin, and charge q2= -5.00 uC is at x= 0.200
artcher [175]
We have all the charges for q1, q2, and q3. 
Since k = 8.988x10^2, and N=m^2/c^2

F(1) = F (2on1) + F (3on1)

F(2on1) = k |q1 q2| / r(the distance between the two)^2
k^ | 3x10^-6 x -5 x 10^-6 |   / (.2m)^2
F(2on1) = 3.37 N

Since F1 is 7N,

F(1) = F (2on1) + F (3on1)
7N = 3.37 N + F (3on1)

Since it wil be going in the negative direction,
-7N = 3.37 N + F (3on1)
F(3on1) = -10.37N

F(3on1) = k |q1 q3| / r(the distance between the two)^2 
r^2 x F(3on1) = k |q1 q3| 
r = sqrt of k |q1 q3| / F(3on1) 
= .144 m (distance between q1 and q3)
0 - .144m 

So it's located in -.144m

Thank you for posting your question. I hope that this answer helped you. Let me know if you need more help. 
6 0
3 years ago
Read 2 more answers
hii! i need answers for both of these! this is due tomorrow and i want to get it done so i can finish all my other work, thank y
d1i1m1o1n [39]

Answer:

The mass and velocity for kinetic energy. Potential Energy: How high an object is and the mass in kilograms or it is the weight in and how high an object is. There are two formulas to calculate potential energy, but the one with grams is used more often.

Explanation:

Hope this helps!

5 0
3 years ago
1. When you have different masses for each sphere, how does the force that the larger mass sphere exerts on the smaller mass sph
aleksandrvk [35]

1) The forces are equal (Newton's third law of motion)

2) The force between the spheres will quadruple

3) The force of gravity exerted by the notebook on you is negligible

Explanation:

1)

In this part of the problem, we want to compare the gravitational force exerted by the larger mass sphere on the smaller mass sphere to the force exerted by the smaller mass sphere to the larger mass sphere.

We can do this by using Newton's third law of motion, which states that:

<em>"When an object A exerts a force (called </em><em>action</em><em>) on an object B, then object B exerts an equal and opposite force (called </em><em>reaction</em><em>) on object A"</em>

In this problem, we can identify the larger mass sphere as object A and the smaller mass sphere as object B. This law tells us that the two forces are equal in magnitude and opposite in direction: therefore, the gravitational force exerted by the larger mass sphere on the smaller mass sphere is equal to the force exerted by the smaller mass sphere to the larger mass sphere.

2)

The magnitude of the gravitational force between the two spheres is given by

F=G\frac{m_1 m_2}{r^2}

where

G is the gravitational constant

m_1, m_2 are the masses of the two spheres

r is the separation between the two spheres

In this problem, we are asked to find what happens when the distance between the spheres is halved, therefore when the new distance is

r'=\frac{r}{2}

Substituting into the equation, we find

F'=G\frac{m_1 m_2}{r'^2}=G\frac{m_1 m_2}{(r/2)^2}=4(\frac{Gm_1 m_2}{r^2})=4F

So, the force between the two spheres will quadruple.

3)

We can give an estimate for the gravitational force exerted by your notebook on you.

As we said, the magnitude of the gravitational force is

F=G\frac{m_1 m_2}{r^2}

Where:

G=6.67\cdot 10^{-11} m^3 kg^{-1}s^{-2} is the gravitational constant

Let's estimate the following:

m_1 = 60 kg is your mass

m_2 = 2 kg is the mass of the notebook

r=1 m, assuming the notebook is at 1 metre from you

Substituting,

F=(6.67\cdot 10^{-11})\frac{(60)(2)}{1^2}=8.0\cdot 10^{-9} N

We see that this force has an extremely small value: therefore, it is almost negligible in daily life, where other much stronger forces act on you.

Learn more about gravity:

brainly.com/question/1724648

brainly.com/question/12785992

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • The pencil rotates about an axis perpendicular to the plane of the figure. which of the labeled points is the point that the axi
    9·2 answers
  • Which planet moves faster in its orbit: jupiter or neptune? explain?
    15·1 answer
  • In which kingdoms are all organisms multicellular
    6·1 answer
  • A series RLC circuit with L = 13 mH, C = 3.6 µF, and R = 3.2 ohms is driven by a generator with a maximum emf of 120 V and a var
    11·1 answer
  • Now that you are familiar with MRI's, nanotechnology and micro-bots, use your imagination to brainstorm other probable invention
    9·1 answer
  • Work and power!!
    15·1 answer
  • A stone tumbles into a mine shaft strikes bottom after falling for 3.8 seconds. How deep is the mine shaft
    11·1 answer
  • PLEASE HELP THIS IS DUE IN 15 MINS
    15·1 answer
  • . In a wave, …………………… is carried from one place to another.
    10·1 answer
  • A flashlight bulb with a 6.00 resistor uses 18.0W of power. What is the current through the bulb
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!