Answer:
1. Newton's first law
2.Newton's second law
3.Newton's third law
Explanation:
1. Newton's first law stated, In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force... this is base of the concept of inertia.
2. Newton's second law stated, In an inertial frame of reference, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F = ma, or in easier words, F is directly proportional to a.
3. Newton's third law stated, When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body., In this case, the Normal Are opposite with gravititional force.
One day, as I was walking, I found some sandy soil beside the road.
Answer:
Explanation:
All the displacement will be converted into vector, considering east as x axis and north as y axis.
5.3 km north
D = 5.3 j
8.3 km at 50 degree north of east
D₁= 8.3 cos 50 i + 8.3 sin 50 j.
= 5.33 i + 6.36 j
Let D₂ be the displacement which when added to D₁ gives the required displacement D
D₁ + D₂ = D
5.33 i + 6.36 j + D₂ = 5.3 j
D₂ = 5.3 j - 5.33i - 6.36j
= - 5.33i - 1.06 j
magnitude of D₂
D₂²= 5.33² + 1.06²
D₂ = 5.43 km
Angle θ
Tanθ = 1.06 / 5.33
= 0.1988
θ =11.25 ° south of due west.
<u>Given data</u>
Source temperature (T₁) = 177°C = 177+273 = 450 K
Sink temperature (T₂) = 27°C = 27+273 = 300 K
Energy input (Q₁) = 3600 J ,
Work done = ?
We know that, efficiency (η) = Net work done ÷ Heat supplied
η = W ÷ Q₁
W = η × Q₁
First determine the efficiency ( η ) = ?
Also, we know that ( η ) = (T₁ - T₂) ÷ (T₁)
= 33.3% = 0.333
Now, Work done is W = η × Q₁
= 0.33 × 3600
<em> W = 1188 J</em>
<em>Work done by the engine is 1188 J</em>