1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
3 years ago
12

A particle with an initial linear momentum of 2.00 kg-m/s directed along the positive x-axis collides with a second particle, wh

ich has an initial linear momentum of4.00 kg-m/s, directed along the positive y-axis. The final momentum of the first particle is 3.00 kg-m/s, directed 45.0 above the positive x-axis.
a. the magnitude and direction (angle expressed counter-clockwise with respect to the positive x-axis) of the final momentum for the second particle
b. assuming that these particles have the same mass, % loss of their total kinetic energy after they collided
Physics
1 answer:
ladessa [460]3 years ago
6 0

Answer:

a) p₂ = 1.88 kg*m/s

   θ = 273.4 º

b)  Kf = 37% of Ko

Explanation:

a)

  • Assuming no external forces acting during the collision, total momentum must be conserved.
  • Since momentum is a vector, their components (projected along two axes perpendicular each other, x- and y- in this case) must be conserved too.
  • The initial momenta of both particles are directed one along the x-axis, and the other one along the y-axis.
  • So for the particle moving along the positive x-axis, we can write the following equations for its initial momentum:

       p_{o1x} = 2.00 kg*m/s (1)

       p_{o1y} = 0 (2)

  • We can do the same for the particle moving along the positive y-axis:

        p_{o2x} = 0 (3)

        p_{o2y} = 4.00 kg*m/s (4)

  • Now, we know the value of magnitude of the final momentum p1, and the angle that makes with the positive x-axis.
  • Applying the definition of cosine and sine of an angle, we can find the x- and y- components of the final momentum of the first particle, as follows:

       p_{f1x} = 3.00 kg*m/s * cos 45 = 2.12 kg*m/s (5)

      p_{f1y} = 3.00 kg*m/s sin 45 = 2.12 kg*m/s  (6)

  • Now, the total initial momentum, along these directions, must be equal to the total final momentum.
  • We can write the equation for the x- axis as follows:

       p_{o1x} + p_{o2x} = p_{f1x} + p_{f2x}  (7)

  • We know from (3) that p₀₂ₓ = 0, and we have the values of p₀1ₓ from (1) and pf₁ₓ from (5) so we can solve (7) for pf₂ₓ, as follows:

       p_{f2x} = p_{o1x} - p_{f1x} = 2.00kg*m*/s - 2.12 kg*m/s = -0.12 kg*m/s (8)

  • Now, we can repeat exactly the same process for the y- axis, as follows:

       p_{o1y} + p_{o2y} = p_{f1y} + p_{f2y}  (9)

  • We know from (2) that p₀1y = 0, and we have the values of p₀₂y from (4) and pf₁y from (6) so we can solve (9) for pf₂y, as follows:

       p_{f2y} = p_{o1y} - p_{f1y} = 4.00kg*m*/s - 2.12 kg*m/s = 1.88 kg*m/s (10)

  • Since we have the x- and y- components of the final momentum of  the second particle, we can find its magnitude applying the Pythagorean Theorem, as follows:

       p_{f2} = \sqrt{p_{f2x} ^{2} + p_{f2y} ^{2} }  = \sqrt{(-0.12m/s)^{2} +(1.88m/s)^{2}} = 1.88 kg*m/s (11)

  • We can find the angle that this vector makes with the positive x- axis, applying the definition of tangent of an angle, as follows:

       tg \theta = \frac{p_{2fy} }{p_{2fx} } = \frac{1.88m/s}{(-0.12m/s} = -15.7 (12)

  • The angle that we are looking for is just the arc tg of (12) which measured in a counter-clockwise direction from the positive x- axis, is just 273.4º.

b)

  • Assuming that both masses are equal each other, we find that the momenta are proportional to the speeds, so we find that the relationship from the final kinetic energy and the initial one can be expressed as follows:

       \frac{K_{f}}{K_{o} } = \frac{v_{f1}^{2} + v_{f2} ^{2}}{v_{o1}^{2} + v_{o2} ^{2} } = \frac{12.5}{20} = 0.63 (13)

  • So, the final kinetic energy has lost a 37% of the initial one.

You might be interested in
The diagram above shows four light bulbs wired in a circuit. What would happen if bulb 3 burned out
andre [41]
The lights will no longer work because the circuit will be cut
6 0
3 years ago
A car traveling at a speed of 24 m/s comes to a stop at a red light.
Degger [83]

u=24m/s

v=0m/s

-a=8m/s^2

now

v=u+at

0=24-8t

t=3s

4 0
3 years ago
Read 2 more answers
The buoyant force acts in all directions. Please select the best answer from the choices provided T F
tester [92]
Where are the answer from the choices ?
5 0
3 years ago
Which of these results in kinetic energy of an object? (1 point)
Aleksandr [31]
Motion I’m pretty sure
7 0
3 years ago
Read 2 more answers
Instantaneous speed is measured
torisob [31]
By using a tangent line.

I need a bit more info to be sure but that's not wrong.
6 0
3 years ago
Other questions:
  • When a car has a dead battery it can often be started by connecting the battery from another car?
    9·1 answer
  • You are in the lab and are given two rods set up so that the top rod is directly above the bottom one. The two straight rods 50-
    10·1 answer
  • If the distance between two masses is doubled, the force between them will be
    14·2 answers
  • 2. Which of the following is accurate when discussing specific neat?
    6·1 answer
  • 90 points whats the equation for how fast something will be traveling before it hits the ground. How to do the equation PLEASE E
    10·2 answers
  • If a wave has a speed of 362 m/s and a period of 4.17 ms, its wavelength is closest to
    15·1 answer
  • PLEASEEE HELPPP!!!!
    10·1 answer
  • What determines a wave’s velocity? a The number of waves per a period of time. b The amplitude of the wave. c The medium it trav
    15·1 answer
  • An isotope of Technetium has a half-life of 6 hours. If it is given to a patient as part of a medical procedure,
    6·1 answer
  • What is the maginitude of the average velocity of the particle between t = 1.0 s and t = 4.0 s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!