1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
3 years ago
12

A particle with an initial linear momentum of 2.00 kg-m/s directed along the positive x-axis collides with a second particle, wh

ich has an initial linear momentum of4.00 kg-m/s, directed along the positive y-axis. The final momentum of the first particle is 3.00 kg-m/s, directed 45.0 above the positive x-axis.
a. the magnitude and direction (angle expressed counter-clockwise with respect to the positive x-axis) of the final momentum for the second particle
b. assuming that these particles have the same mass, % loss of their total kinetic energy after they collided
Physics
1 answer:
ladessa [460]3 years ago
6 0

Answer:

a) p₂ = 1.88 kg*m/s

   θ = 273.4 º

b)  Kf = 37% of Ko

Explanation:

a)

  • Assuming no external forces acting during the collision, total momentum must be conserved.
  • Since momentum is a vector, their components (projected along two axes perpendicular each other, x- and y- in this case) must be conserved too.
  • The initial momenta of both particles are directed one along the x-axis, and the other one along the y-axis.
  • So for the particle moving along the positive x-axis, we can write the following equations for its initial momentum:

       p_{o1x} = 2.00 kg*m/s (1)

       p_{o1y} = 0 (2)

  • We can do the same for the particle moving along the positive y-axis:

        p_{o2x} = 0 (3)

        p_{o2y} = 4.00 kg*m/s (4)

  • Now, we know the value of magnitude of the final momentum p1, and the angle that makes with the positive x-axis.
  • Applying the definition of cosine and sine of an angle, we can find the x- and y- components of the final momentum of the first particle, as follows:

       p_{f1x} = 3.00 kg*m/s * cos 45 = 2.12 kg*m/s (5)

      p_{f1y} = 3.00 kg*m/s sin 45 = 2.12 kg*m/s  (6)

  • Now, the total initial momentum, along these directions, must be equal to the total final momentum.
  • We can write the equation for the x- axis as follows:

       p_{o1x} + p_{o2x} = p_{f1x} + p_{f2x}  (7)

  • We know from (3) that p₀₂ₓ = 0, and we have the values of p₀1ₓ from (1) and pf₁ₓ from (5) so we can solve (7) for pf₂ₓ, as follows:

       p_{f2x} = p_{o1x} - p_{f1x} = 2.00kg*m*/s - 2.12 kg*m/s = -0.12 kg*m/s (8)

  • Now, we can repeat exactly the same process for the y- axis, as follows:

       p_{o1y} + p_{o2y} = p_{f1y} + p_{f2y}  (9)

  • We know from (2) that p₀1y = 0, and we have the values of p₀₂y from (4) and pf₁y from (6) so we can solve (9) for pf₂y, as follows:

       p_{f2y} = p_{o1y} - p_{f1y} = 4.00kg*m*/s - 2.12 kg*m/s = 1.88 kg*m/s (10)

  • Since we have the x- and y- components of the final momentum of  the second particle, we can find its magnitude applying the Pythagorean Theorem, as follows:

       p_{f2} = \sqrt{p_{f2x} ^{2} + p_{f2y} ^{2} }  = \sqrt{(-0.12m/s)^{2} +(1.88m/s)^{2}} = 1.88 kg*m/s (11)

  • We can find the angle that this vector makes with the positive x- axis, applying the definition of tangent of an angle, as follows:

       tg \theta = \frac{p_{2fy} }{p_{2fx} } = \frac{1.88m/s}{(-0.12m/s} = -15.7 (12)

  • The angle that we are looking for is just the arc tg of (12) which measured in a counter-clockwise direction from the positive x- axis, is just 273.4º.

b)

  • Assuming that both masses are equal each other, we find that the momenta are proportional to the speeds, so we find that the relationship from the final kinetic energy and the initial one can be expressed as follows:

       \frac{K_{f}}{K_{o} } = \frac{v_{f1}^{2} + v_{f2} ^{2}}{v_{o1}^{2} + v_{o2} ^{2} } = \frac{12.5}{20} = 0.63 (13)

  • So, the final kinetic energy has lost a 37% of the initial one.

You might be interested in
The grid in a triode is kept negatively charged to prevent...
Anestetic [448]
I think the correct answer is the third statement, electron from escaping from the tube containing the triode. The negative charge on the grid repels any electron in the tube. As a result,the flow of current is controlled. If the field is that strong, all current flow will stop resulting to maintaining the electron cloud in the tube. 
4 0
3 years ago
Read 2 more answers
The magnification of a microscope is increased when_________.
azamat

Answer:

Option B

Explanation:

Magnification of Microscope is  

M = M_o \times M_e  

Mo= Magnification of objective lens and  

Me= magnification of the eyepiece.  

Both magnifications( of objective and eyepiece) are inversely proportional to the focal length.  

Magnification,  

M \propto \dfrac{1}{f}

when the focal length is less magnification will be high and when the magnification is the low focal length of the microscope will be more.

Thus. Magnification will increase by decreasing the focal length.

The correct answer is Option B

6 0
3 years ago
According to Coulomb's law, if the separation between two particles of the same charge increases four times, the potential energ
Lera25 [3.4K]

Answer:

c.   V = k Q1 * Q2 / R1      potential energy of Q1 and Q2 separated by R

V2 / V1 = (R1 / R2) = 1/4

V2 = V1 / 4

8 0
3 years ago
Graph the following data tables on different graphs.
Anna [14]

Answer:

Sjjsjsjsjsjsjsjwjwjw

8 0
3 years ago
Astronomy can best be described as a/an
Alchen [17]
<span>Astronomy is a natural science that studies celestial objects and phenomena. More generally, all astronomical phenomena that originate outside Earth's atmosphere are within the purview of astronomy. Therefore, the correct answer to the question "Astronomy can best be described as a/an" is "study of objects beyond the Earth's atmosphere."</span>
3 0
3 years ago
Other questions:
  • Two balls of mass 0.09 kg hang on strings attached to the same point on the ceiling. The balls are given charges Q that cause th
    11·1 answer
  • The solubility of a gas is .55 g/l at 8.0 atm pressure. what will be the solubility of the gas at 5.0 atm partial pressure?
    14·1 answer
  • What additional information do you need to prove ∆ABC ≅ ∆DEF by the SAS Postulate?
    14·1 answer
  • HELP PLEASE ASAP
    5·2 answers
  • During a golf drive, the angular velocity of the driver is 20 rad/s just before impact with the golf ball. If the distance from
    6·1 answer
  • If the moment acting on the cross section is M=630N⋅m, determine the maximum bending stress in the beam. Express your answer to
    15·1 answer
  • Which statement best describes the magnetic properties of a material?
    14·1 answer
  • Use the principle of superposition (Equation 1.3) to predict the electric field at the point 0.5 meters to the right and 1.5 met
    7·1 answer
  • How does energy affect wavelength
    8·1 answer
  • Friction can be reduced by using ___________.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!