1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex
2 years ago
12

A particle with an initial linear momentum of 2.00 kg-m/s directed along the positive x-axis collides with a second particle, wh

ich has an initial linear momentum of4.00 kg-m/s, directed along the positive y-axis. The final momentum of the first particle is 3.00 kg-m/s, directed 45.0 above the positive x-axis.
a. the magnitude and direction (angle expressed counter-clockwise with respect to the positive x-axis) of the final momentum for the second particle
b. assuming that these particles have the same mass, % loss of their total kinetic energy after they collided
Physics
1 answer:
ladessa [460]2 years ago
6 0

Answer:

a) p₂ = 1.88 kg*m/s

   θ = 273.4 º

b)  Kf = 37% of Ko

Explanation:

a)

  • Assuming no external forces acting during the collision, total momentum must be conserved.
  • Since momentum is a vector, their components (projected along two axes perpendicular each other, x- and y- in this case) must be conserved too.
  • The initial momenta of both particles are directed one along the x-axis, and the other one along the y-axis.
  • So for the particle moving along the positive x-axis, we can write the following equations for its initial momentum:

       p_{o1x} = 2.00 kg*m/s (1)

       p_{o1y} = 0 (2)

  • We can do the same for the particle moving along the positive y-axis:

        p_{o2x} = 0 (3)

        p_{o2y} = 4.00 kg*m/s (4)

  • Now, we know the value of magnitude of the final momentum p1, and the angle that makes with the positive x-axis.
  • Applying the definition of cosine and sine of an angle, we can find the x- and y- components of the final momentum of the first particle, as follows:

       p_{f1x} = 3.00 kg*m/s * cos 45 = 2.12 kg*m/s (5)

      p_{f1y} = 3.00 kg*m/s sin 45 = 2.12 kg*m/s  (6)

  • Now, the total initial momentum, along these directions, must be equal to the total final momentum.
  • We can write the equation for the x- axis as follows:

       p_{o1x} + p_{o2x} = p_{f1x} + p_{f2x}  (7)

  • We know from (3) that p₀₂ₓ = 0, and we have the values of p₀1ₓ from (1) and pf₁ₓ from (5) so we can solve (7) for pf₂ₓ, as follows:

       p_{f2x} = p_{o1x} - p_{f1x} = 2.00kg*m*/s - 2.12 kg*m/s = -0.12 kg*m/s (8)

  • Now, we can repeat exactly the same process for the y- axis, as follows:

       p_{o1y} + p_{o2y} = p_{f1y} + p_{f2y}  (9)

  • We know from (2) that p₀1y = 0, and we have the values of p₀₂y from (4) and pf₁y from (6) so we can solve (9) for pf₂y, as follows:

       p_{f2y} = p_{o1y} - p_{f1y} = 4.00kg*m*/s - 2.12 kg*m/s = 1.88 kg*m/s (10)

  • Since we have the x- and y- components of the final momentum of  the second particle, we can find its magnitude applying the Pythagorean Theorem, as follows:

       p_{f2} = \sqrt{p_{f2x} ^{2} + p_{f2y} ^{2} }  = \sqrt{(-0.12m/s)^{2} +(1.88m/s)^{2}} = 1.88 kg*m/s (11)

  • We can find the angle that this vector makes with the positive x- axis, applying the definition of tangent of an angle, as follows:

       tg \theta = \frac{p_{2fy} }{p_{2fx} } = \frac{1.88m/s}{(-0.12m/s} = -15.7 (12)

  • The angle that we are looking for is just the arc tg of (12) which measured in a counter-clockwise direction from the positive x- axis, is just 273.4º.

b)

  • Assuming that both masses are equal each other, we find that the momenta are proportional to the speeds, so we find that the relationship from the final kinetic energy and the initial one can be expressed as follows:

       \frac{K_{f}}{K_{o} } = \frac{v_{f1}^{2} + v_{f2} ^{2}}{v_{o1}^{2} + v_{o2} ^{2} } = \frac{12.5}{20} = 0.63 (13)

  • So, the final kinetic energy has lost a 37% of the initial one.

You might be interested in
The sun is 1.5 × 108 km from Earth. The index of refraction for water is 1.349. How much longer would it take light from the sun
tankabanditka [31]

Answer:

175s

Explanation:

time it takes sunlight to reach the earth in  vacuum

C=light speed=299792458m/s

X=1.5x10^8km=1.5x10^11m

c=X/t

T1=X/c

T1=1.5X10^11/299792458=500.34s

time it takes sunlight to reach the earth in  water:

First we calculate the speed of light in water taking into account the refractive index

Cw=299792458m/s/1.349=222233104.5m/s

T2=1.5x10^11/222233104.5m/s=675s

additional time it would take for the light to reach the earth

ΔT=T2-T1=675-500=175s

4 0
3 years ago
What process, driven by heat generated from within the Earth's core, occurs in the mantle and is a primary cause of plate tecton
timofeeve [1]
The answer is B. Mantle convection.
5 0
3 years ago
Read 2 more answers
What would the answer be ?
Marianna [84]
The second one since you’re changing the soil up by adding different fertilisers. This will be you’re independent variable. And you’re dependent variable is your result = the plant height .
Hope this helps :)
4 0
3 years ago
The field between two charged parallel plates is kept constant. If the two plates are brought closer together, the potential dif
Dovator [93]
The answer is B, because it will lose potential energy.
3 0
3 years ago
The third floor of a house is 8m above street level. How much work is needed to move a 136kg refrigerator to the third floor?
jonny [76]

m = Mass of the refrigerator to be moved to third floor = 136 kg

g = Acceleration due to gravity by earth on the refrigerator being moved = 9.8 m/s²

h = Height to which the refrigerator is moved  = 8 m

W = Work done in lifting the object

Work done in lifting the object is same as the gravitational potential energy gained by the refrigerator. hence

Work done = Gravitation potential energy of refrigerator

W = m g h

inserting the values

W = (136) (9.8) (8)

W = 10662.4 J



8 0
3 years ago
Other questions:
  • a motorcycle begins at rest and accelerates uniformly at 7.9 m/s2. We want to find the time it takes the motorcycle to reach a s
    8·2 answers
  • Calculate A, E, μ, cv and S for 1 mole of Kr at 298 K and 1 atm (assuming ideal behavior)
    13·1 answer
  • Which statement best describes comparative and descriptive investigations? They both include a question, procedure and conclusio
    6·2 answers
  • Select the correct answer.
    5·1 answer
  • Calculate the power of the eye in D when viewing an object 5.70 m away. (Assume the lens-to-retina distance is 2.00 cm. Enter yo
    6·1 answer
  • The back shelf of a car has a physics textbook on it. The coefficient of static friction of 0.44 between the book and the surfac
    11·1 answer
  • (a) When the displacement in SHM is one-sixth the amplitude xm, what fraction of the total energy is kinetic energy? (b) What fr
    11·1 answer
  • Select an incorrect statement relating to a Carnot cycle operating on a gas. A) Each process is a reversible process. B) work oc
    11·1 answer
  • Two cars of the same mass collide at an intersection. Just before the collision, one car is traveling east at 80.0 km/h and the
    6·1 answer
  • Which of the following situations would violate the second law of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!