Answer:
0.06 N
1.08 m/s
Explanation:
m = mass of the fan cart = 0.250 kg
a = acceleration of the fan cart = 24 cm/s² = 0.24 m/s²
F = Net force on the cart
Net force on the cart is given as
F = ma
F = (0.250) (0.24)
F = 0.06 N
v₀ = initial velocity of the cart = 0 m/s
v = final velocity of the cart
t = time interval = 4.5 s
Using the equation
v = v₀ + a t
v = 0 + (0.24) (4.5)
v = 1.08 m/s
The unit of acceleration would be m/s² :)
Answer:
r = 1.61 x 10^{11} m
Explanation:
energy radiated (H) = 2.7 x 10^31 W
surface temperature (T) = 11,000 k
assuming ε = 1 and taking σ = 5.67 x 10^{-8} W/m^{2}.K^{4}
we can find the radius of the star from the equation below
H = A x ε x σ x T^{4}
where area (A) = 4 x π x r^{2} (assuming it is a sphere)
therefore the equation becomes
H = 4 x π x r^{2} x ε x σ x T^{4}
2.7 x 10^31 = 4 x π x r^{2} x 1 x 5.67 x 10^{-8} x (11,000)^{4}
r = 
r = 1.61 x 10^{11} m
The energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
<h3>Conservation of energy</h3>
The amount of energy lost due to air resistance while she was bouncing is determined from the principle of conservation of energy.
ΔE = P.E - Ux
ΔE = mgh - ¹/₂kx²
ΔE = (50)(9.8)(16) - ¹/₂(35)(16)²
ΔE = 3,360 J
Thus, the energy that was lost due to air resistance while she was bouncing is determined as 3,360 J.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
A. The starting height of the ball
Explanation:
When we talk about controlled variables, we refer to the variable that should be kept the same throughout the experiment. The reason why we do this, is to limit anything else that is not being tested, that may affect the results of the experiment.
In the scenario given, the experiment is to see the relationship between the <u>initial height of a basketball</u> and the <u>height of its rebound bounce. </u>
So you the starting height of the ball should vary, meaning it is NOT controlled.