1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pantera1 [17]
3 years ago
11

A can of sardines is made to move along an x axis from x = 0.47 m to x = 1.20 m by a force with a magnitude given by F = exp(–8x

), with x in meters and F in newtons. (Here exp is the exponential function.) How much work is done on the can by the force?
Physics
1 answer:
sattari [20]3 years ago
6 0
If the force were constant or increasing, we could guess that the speed of the sardines is increasing. Since the force is decreasing but staying in contact with the can, we know that the can is slowing down, so there must be friction involved.
Work is the integral of (force x distance) over the distance, which is just the area under the distance/force graph.
The integral of exp(-8x) dx that we need is (-1/8)exp(-8x) evaluated from 0.47 to 1.20 .

I get 0.00291 of a Joule ... seems like a very suspicious solution, but for an exponential integral at a cost of 5 measly points, what can you expect. On the other hand, it's not really too unreasonable. The force is only 0.023 Newton at the beginning, and 0.000067 newton at the end, and the distance is only about 0.7 meter, so there certainly isn't a lot of work going on. The main question we're left with after all of this is: Why sardines ? ?
You might be interested in
A carnival merry-go-round rotates about a vertical axis at a constant rate. A man standing on the edge has a constant speed of 3
Advocard [28]

Answer:

r = 5.07 m

Explanation:

given,

velocity of the man , v = 3.43 m/s

centripetal acceleration, a = 2.32 m/s²

magnitude of position of = ?

using centripetal acceleration formula

a_c =\dfrac{v^2}{r}

2.32 =\dfrac{3.43^2}{r}

r =\dfrac{3.43^2}{2.32}

   r = 5.07 m

The magnitude of the position vector relative to rotational axis is equal to 5.07 m.

5 0
3 years ago
How must a force be applied to cause resonance?
Aleonysh [2.5K]

Answer:

At its most natural frequency. ... A forceful voice, exquisite control of frequency, and oscillating

8 0
3 years ago
A vertical spring gun is used to launch balls into the air. If the spring is compressed by 4.9 cm, the ball of mass 5.5 g is lau
AleksandrR [38]

We know, by conservation of energy :

\dfrac{kx^2}{2}=mgh

Therefore,

\dfrac{x_1^2}{x_2^2}=\dfrac{h_1}{h_2}

Putting given values, we get :

\dfrac{x_1^2}{x_2^2}=\dfrac{h_1}{h_2}\\\\\dfrac{4.9^2}{x_2^2}=\dfrac{50.2}{2\times 50.2}\\\\x_2^2=2\times 4.9^2\\\\x_2 = 4.9\times \sqrt{2}\\\\x_2=6.93\ cm

Therefore, the spring be compressed to 6.93 cm to send the ball twice as high.

Hence, this is the required solution.

6 0
3 years ago
Consider two points in an electric field. The potential at point 1, V1, is 33 V. The potential at point 2, V2, is 175 V. An elec
Mnenie [13.5K]

Answer:

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

Explanation:

Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.

Substituting the values of the variables into the equation, we have

ΔV = V₂ - V₁.

ΔV = 175 V - 33 V.

ΔV = 142 V

The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.

So, substituting the values of the variables into the equation, we have

ΔU = eΔV

ΔU = eΔV

ΔU = -1.602 × 10⁻¹⁹ C × 142 V

ΔU = -227.484 × 10⁻¹⁹ J

ΔU = -2.27484 × 10⁻²¹ J

ΔU ≅ -2.275 × 10⁻²¹ J

So, the required equation for the electric potential energy change is

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

5 0
3 years ago
What fraction of the water must evaporate to remove precisely enough energy to keep the temperature constant? water at 37°c has
mart [117]

The fraction of the water must evaporate to remove precisely enough energy to keep the temperature constant when water at 37°c has a latent heat of vaporization of lv = 580 kcal/kg is 2.58 times 10 to the minus 3.

Vaporization is the process by which a substance is transformed from its liquid or solid state into its gaseous (vapour) state. Boiling is the term for the vaporization process when conditions permit the creation of vapour bubbles within a liquid. Sublimation is the process of directly converting a solid to a liquid.

Boiling and evaporation are the two processes that cause vaporization. Evaporation is the process by which a liquid body's surface changes from a liquid to a gas, as in the case of a drop of water on hot concrete evaporating into a gas. A liquid is said to be boiling when it is heated to the point at which it begins to give off steam, as when you boil water on a stove. The process of converting a substance from its liquid or solid state into its gaseous (vapour) state is known as vaporization.

To learn more about vaporization please visit - brainly.com/question/12625048
#SPJ4

5 0
2 years ago
Other questions:
  • If the near-point distance of the jeweler is 22.0 cm, and the focal length of the magnifying glass is 7.70 cm, find the angular
    5·1 answer
  • If a truck is travelling east on a straight road and travels 100 meters in 25s what is the truck's velocity?
    8·1 answer
  • A speeding car collides with an unlucky bug flying across the road
    5·2 answers
  • The figure shows the motion of electrons in a wire which is near the North pole of a magnet. The wire will be pushed:
    9·1 answer
  • Identify the stage in cellular respiration that produces carbon dioxide as a waste product
    8·1 answer
  • Read the passage.
    9·2 answers
  • 2. Find the electrostatic force between two protons that are 2.0 m apart. The elementary charge of
    5·1 answer
  • When are Waves produced​
    13·1 answer
  • A pendulum is lifted and released, causing the pendulum to oscillate in
    12·1 answer
  • Determine whether the statement is true or false. If f '(c) = 0, then f has a local maximum or minimum at c.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!