Answer:
Time interval;Δt ≈ 37 seconds
Explanation:
We are given;
Angular deceleration;α = -1.6 rad/s²
Initial angular velocity;ω_i = 59 rad/s
Final angular velocity;ω_f = 0 rad/s
Now, the formula to calculate the acceleration would be gotten from;
α = Change in angular velocity/time interval
Thus; α = Δω/Δt = (ω_f - ω_i)/Δt
So, α = (ω_f - ω_i)/Δt
Making Δt the subject, we have;
Δt = (ω_f - ω_i)/α
Plugging in the relevant values to obtain;
Δt = (0 - 59)/(-1.6)
Δt = -59/-1.6
Δt = 36.875 seconds ≈ 37 seconds
Energy released by fusion in the sun is initially in the form of gamma rays.
Gamma rays arise from the radioactive decay of nuclei. They are penetrating electromagnetic radiations consisting of very high energy photons.
Gamma rays are ionizing radiations and have very serious biological dangers and hazards (due to their ability of ionizing the atoms).