Answer: 37.981 m/s
Explanation:
This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:
<u>x-component:
</u>
(1)
Where:
is the point where the ball strikes ground horizontally
is the ball's initial speed
because we are told the ball is thrown horizontally
is the time since the ball is thrown until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the ball
is the final height of the ball (when it finally hits the ground)
is the acceleration due gravity
Knowing this, let's start by finding
from (2):
<u></u>
(3)
(4)
(5)
(6)
Then, we have to substitute (6) in (1):
(7)
And find
:
(8)
(9)
(10)
On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity
:
(11)
(12)
(13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.
However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).
Answer:
Explanation:
The football players collide in a completely inelastic collision, in other words they have the same velocity after the collision, this velocity has a magnitude V=1.6m/s.
We need to use the conservation of momentum Law, the total momentum is the same before and after the collision, at the initial point the receiver does not have any speed
(1)
We solve in order to find the receiver mass:
Answer:
D
Explanation:
I just had this question the answer is D
<span>Autotrophic plants do not require "Oxygen" as it is a waste product of the process of photosynthesis which they do.
In short, Your Final Answer would be Option D
Hope this helps!</span>