Answer:
The new frequency (F₂ ) will be related to the old frequency by a factor of one (1)
Explanation:
Fundamental frequency = wave velocity/2L
where;
L is the length of the stretched rubber
Wave velocity = 
Frequency (F₁) = 
To obtain the new frequency with respect to the old frequency, we consider the conditions stated in the question.
Given:
L₂ =2L₁ = 2L
T₂ = 2T₁ = 2T
(M/L)₂ = 0.5(M/L)₁ = 0.5(M/L)
F₂ = ![\frac{\sqrt{\frac{2T}{0.5(\frac{M}{L})}}}{4*L} = \frac{\sqrt{4(\frac{T}{\frac{M}{L}}})}{4*L} = \frac{2}{2} [\frac{\sqrt{\frac{T}{\frac{M}{L}}}}{2*L}] = F_1](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B%5Cfrac%7B2T%7D%7B0.5%28%5Cfrac%7BM%7D%7BL%7D%29%7D%7D%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B%5Csqrt%7B4%28%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%29%7D%7B4%2AL%7D%20%3D%20%5Cfrac%7B2%7D%7B2%7D%20%5B%5Cfrac%7B%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Cfrac%7BM%7D%7BL%7D%7D%7D%7D%7B2%2AL%7D%5D%20%3D%20F_1)
Therefore, the new frequency (F₂ ) will be related to the old frequency by a factor of one (1).
Explanation:
The position vector r:

The velocity vector v:

The acceleration vector a:



Answer:
The minimum coefficient of friction required is 0.35.
Explanation:
The minimum coefficient of friction required to keep the crate from sliding can be found as follows:


Where:
μ: is the coefficient of friction
m: is the mass of the crate
g: is the gravity
a: is the acceleration of the truck
The acceleration of the truck can be found by using the following equation:


Where:
d: is the distance traveled = 46.1 m
: is the final speed of the truck = 0 (it stops)
: is the initial speed of the truck = 17.9 m/s
If we take the reference system on the crate, the force will be positive since the crate will feel the movement in the positive direction.

Therefore, the minimum coefficient of friction required is 0.35.
I hope it helps you!
Force = (mass) x (acceleration)
= (0.025 kg) x (5 m/s²)
= 0.125 Newton
Answer:
Electrical energy
Explanation:
<em>Hope </em><em>It </em><em>helps </em><em>you </em>