The equations are analogous to that for linear movement:
acceleration = (final velocity - initial velocity) / time
acceleration = (3000 rpm - 0 rpm) / 2.0 s
a) acceleration = 1500 rpm/s or 25 rp(s^2)
For the displacement
displacement = initial velocity*time + 0.5*acceleration*time^2
displacement = (0)*(2 s) + (0.5)(25 rps^2)*(2 s)^2
b) displacement = 50 revolutions
Both of your answers are correct
No it's the opposite, ths higher the pitch the greater the frequency.