The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
Answer:
C. involve the attraction of opposite charges
Explanation:
<em>Ionic bonding</em> involves the attraction between <em>oppositely charged ions</em>, as in Na⁺ Cl⁻.
<em>Covalent bonding</em> involves the attraction between <em>negatively charged electrons and positivey charged nuclei</em>, as in a C-H bond.
A is <em>wrong</em>. Ionic bonding involves the transfer of electrons.
B is <em>wrong</em>. Covalent bonding involves the sharing of electrons.
D is <em>wrong</em>. Ionic bonds are usually stronger than covalent bonds.
Answer:
!atoms in the nitrogen family.. have 5 valence electrons. They tend to share electrons when they bond. Other elements in this family are phosphorus, arsenic, antimony, and bismuth.
Answer:
It is C
Explanation:
It is Cutting paper because cutting paper doesn't alter the chemical composition of paper
you would change one element to a diffrent element