Answer: The change in boiling point for 397.7 g of carbon disulfide (Kb = 2.34°C kg/mol) if 35.0 g of a nonvolatile, nonionizing compound is dissolved in it is 
Explanation:
Elevation in boiling point:
where,
= boiling point of solution = ?
= boiling point of pure carbon disulfide=
= boiling point constant =
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte)
= mass of solute = 35.0 g
= mass of solvent (carbon disulphide) = 397.7 g
= molar mass of solute = 70.0 g/mol
Now put all the given values in the above formula, we get:
Therefore, the change in boiling point is 
A) covert 0.330g to moles by dividing by molar mass of P2O5 .. Let's call this Y moles
B) 1 mole of anything contains the Avogradro Number of molecules
So here it is 6.02 x 10^23 x Y molecules
C) work out how many atoms in each molecule 2P + 5O total 7
So multiply answer to B by 7 to get final answer
Answer:
The amount of solute added.
Explanation:
The amount of solute added is directly proportional to the number of ions.
The higher the amount added the higher the number of moles.
The number of moles is multiplied by the Avogadro's constant to get the number ions.
No of ions= No of moles × L
L is the Avogadro's number.
There’s going to be 8 neutrons presented
Answer:
HOFO = (0, 0, +1, -1)
Explanation:
The formal charge (FC) can be calculated using the following equation:

<u>Where:</u>
V: are the valence electrons
N: are the nonbonding electrons
B: are the bonding electrons
The arrange of the atoms in the oxyacid is:
H - O₁ - F - O₂
Hence, the formal charge (FC) on each of the atoms is:
H: FC = 1 - 0 - 1/2*(2) = 0
O₁: FC = 6 - 4 - 1/2*(4) = 0
F: FC = 7 - 4 - 1/2*(4) = +1
O₂: FC = 6 - 6 - 1/2*(2) = -1
We can see that the negative charge is in the oxygen instead of the most electronegative element, which is the F. This oxyacid is atypical.
I hope it helps you!