There is 40 g of sugar in a 500 ml bottle of lemon juice
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight/volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
the concentration of sugar in lemon juice :

So for 500 ml juice :

Pressure varies in the atmosphere because air molecules are being pulled down towards the center of the earth-hope this helps!
Molarity can be used to calculate the volume of solvent or the amount of solute. The relationship between two solutions with the same amount of moles of solute can be represented by the formula c1V1 = c2V2, where c is concentration and V is volume.
Answer: D) 1.00 g
Explanation:
According to the Avogadro's law, the volume of gas is directly proportional to the number of moles of gas at same pressure and temperature. That means,

or,

where,
= initial volume of gas = 2.00 L
= final volume of gas = 3.00 L
= initial moles of gas =
= final moles of gas = ?
Now we put all the given values in this formula, we get


Mass of helium =
Thus mass of helium added = (3.00-2.00) g = 1.00 g
Ca(OH)2(aq) + 2HCl(aq)------> CaCl2(aq) + 2H2O(l) ΔH-?
CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), Δ<span>H = -186 kJ
</span>
CaO(s) + H2O(l) -----> Ca(OH)2(s), Δ<span>H = -65.1 kJ
</span>
1) Ca(OH)2 should be reactant, so
CaO(s) + H2O(l) -----> Ca(OH)2(s)
we are going to take as
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
2) Add 2 following equations
Ca(OH)2(s)---->CaO(s) + H2O(l), and ΔH = 65.1 kJ
<span><u>CaO(s) + 2HCl(aq)-----> CaCl2(aq) + H2O(l), and ΔH = -186 kJ</u>
</span>Ca(OH)2(s)+CaO(s) + 2HCl(aq)--->CaO(s) + H2O(l)+CaCl2(aq) + H2O(l)
Ca(OH)2(s)+ 2HCl(aq)---> H2O(l)+CaCl2(aq) + H2O(l)
By addig these 2 equation, we got the equation that we are needed,
so to find enthalpy of the reaction, we need to add enthalpies of reactions we added.
ΔH=65.1 - 186 ≈ -121 kJ