Answer:k
Explanation:
Atomic theory would be the theory or explanation of the function of atoms and their relationship with each other.
Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
MgF is an ionic compound because it's bond is between a metal and a non-metal
Answer:
802.69 g
Explanation:
The molar mass of Barium nitrite is 229.34 g/mol, so 3.5 moles of it will have a mass of ...
3.5 mol × 229.34 g/mol = 802.69 g
The answer is: H₃PO₄.
A phosphoric acid is three protic acid, which means that in water release tree protons.
Phosphoric acid ionizes in three steps in water.
First step: H₃PO₄(aq) ⇄ H₂PO₄⁻(aq) + H⁺(aq).
Second step: H₂PO₄⁻(aq)⇄ HPO₄²⁻(aq) + H⁺(aq).
Third step: HPO₄²⁻(aq) ⇄ PO₄³⁻(aq) + H⁺(aq).
Species that are present: H₃PO₄, H₂PO₄⁻, HPO₄²⁻, PO₄³⁻ and H⁺.
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable.