Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?
moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?
mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?
moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
<u>Answer:</u>
<u>For a:</u> The volume of the box is 217.5 mL
<u>For b:</u> The volume of the box is 0.2175 L
<u>Explanation:</u>
The box is a type of cuboid.
To calculate the volume of cuboid, we use the equation:
where,
V = volume of cuboid
l = length of cuboid = 10.00 cm
b = breadth of cuboid = 7.25 cm
h = height of cuboid = 3.00 cm
Putting values in above equation, we get:
To convert the volume of cuboid into milliliters, we use the conversion factor:
So,
Hence, the volume of the box is 217.5 mL
To convert the volume of cuboid into liters, we use the conversion factor:
So,
Hence, the volume of the box is 0.2175 L
Answer:
Thermal energy is taken from heat sink in higher temperature. A thermal power machine does mechanical energy using part of the heat.
Part of heat taken are given in cold reservoir in lower temperature
Explanation:
Answer:
2.63*10^23
Explanation:
1 mol rhodium = 102.91
44.8g/1 mol * 1 mol/ 102.91mol * 6.022*10^23/1 mol =
2.63*10^23
C. pollute water and damage aquatic ecosystems