Answer:
146.3g NaCl (mol NaCl/58.44g NaCl) = 2.50 mol NaCl
1.5M NaCl = 1.5 mol NaCl / 1 L = 2.5 mol NaCl / x L, solve for x
x L = 2.5 mol NaCl / 1.5 mol NaCl = 1.66 L
It gives the answer and all the working.
To put it another way:
Dividing the amount required by the molar mass
we quickly see that 2.5 moles are required.
One litre of 1.5 molar solution gives 1.5 moles
we need a further mole, which is 2/3 of 1.5 so 2/3 of a litre.
Answer:
if you want to have answers, don't take it wrong ...but put more details !
Explanation:
25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.
Answer:
12.29 M
Explanation:
- The reaction that takes place is:
H₂SO₄ + 2NaOH → 2Na⁺ + SO₄⁻² + 2H₂O
- Now let's calculate the <u>moles of H₂SO₄ that were titrated</u>:
= 0.01229 mol H₂SO₄.
- Thus, the <u>concentration of the diluted solution is</u>:
0.01229 mol H₂SO₄ / 0.010 L = 1.229 M
- Finally, the <u>concentration of the original acid solution is:</u>
= 12.29 M
Answer:
A chemist searches for new knowledge about chemicals and use it to improve the way we live. He or she may develop products such as synthetic fibers, drugs and cosmetics. Chemists create processes, including all refining and petrochemical processing, that reduce energy use and pollution.