Answer:
elecreonegativity is the attraction of a bonded atom for the pair of electrons in a covalent bond. this can occur if:
- the nuclear charges are different
- the atoms are different sizes
- the shared pair of electrons are closer to one nucleus than the other
Answer:
11.9 is the pOH of a 0.150 M solution of potassium nitrite.
Explanation:
Solution : Given,
Concentration (c) = 0.150 M
Acid dissociation constant = 
The equilibrium reaction for dissociation of
(weak acid) is,

initially conc. c 0 0
At eqm.

First we have to calculate the concentration of value of dissociation constant
.
Formula used :

Now put all the given values in this formula ,we get the value of dissociation constant
.



By solving the terms, we get

No we have to calculate the concentration of hydronium ion or hydrogen ion.
![[H^+]=c\alpha=0.150\times 0.0533=0.007995 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Calpha%3D0.150%5Ctimes%200.0533%3D0.007995%20M)
Now we have to calculate the pH.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


pH + pOH = 14
pOH =14 -2.1 = 11.9
Therefore, the pOH of the solution is 11.9
Answer:
Carbon Dioxide = CO2
Explanation:
The synthesis of Malachite is seen in the chemical formula:
CuSO 4 . 5H2O(aq) + 2NaCO3(aq) --> CuCO 3 Cu(OH) 2 (s) + 2Na 2 SO 4 (aq) + CO 2 (g) + 9H 2 O(l)
The bubbles mentioned in the question hints that our interest is the compounds in their gseous phase (g).
Upon examining the chemical equation, only CO2 is in the gaseous state and hence the only one that can be formed as bubbles,
Throw it in the ocean lol
If a cell is placed in an isotonic solution, there will be no net flow of water into or out of the cell, and the cell's volume will remain stable. If the solute concentration outside the cell is the same as inside the cell, and the solutes cannot cross the membrane, then that solution is isotonic to the cell.