The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:

where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 = 
h = Planck's constant = 
c = speed of light = 
= wavelength of light = ?
Putting in the values:


Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm
<span>are
in random, constant, straight-line motion</span>
<span>
</span>
<span>your welcome :)</span>
<span>all I Ask is for a thank u peaceeee</span>
Because the size of atoms increase as you move down the periodic table.
The number of atoms present, on average, will be the natural abundance of the isotope times the number of atoms in the sample => number of C-13 atoms = C-13 abundance * number of atoms in the sample = 1.07% * 30,000 = 1.07 * 30,000 / 100 = 321 atoms.<span> Answer: 321 atoms.</span>
A fossilized fish could be used to identify the date of of the rock layer.