Answer:
The potential energy of the rock = 10.5 kN
Explanation:
Mass of rock = 25 kg
Acceleration due to gravity = 10 m/s²
Height = 42 m
Potential energy, PE = mgh, where m is the mass, g is acceleration due to gravity and h is the height.
PE = 25 x 10 x 42 = 10500 N = 10.5 kN
The potential energy of the rock = 10.5 kN
Answer:
If this is a multiple choice question, then the answer is D.
Explanation:
Compounds are composed of atoms, which are composed of subatomic particles and consist of matter. Since they are composed of atoms rather than vice-versa, compounds cannot be found inside atoms and are not the most basic form of matter (ruling out A and C). A pure substance contains atoms, which are each composed of subatomic particles. Therefore, a pure substance must have atoms if it contains subatomic particles (ruling out B). The only answer left is D.
You're fishing for "polarization".
Answer:
T_ww = 43,23°C
Explanation:
To solve this question, we use energy balance and we state that the energy that enters the systems equals the energy that leaves the system plus losses. Mathematically, we will have that:
E_in=E_out+E_loss
The energy associated to a current of fluid can be defined as:
E=m*C_p*T_f
So, applying the energy balance to the system described:
m_CW*C_p*T_CW+m_HW*C_p*T_HW=m_WW*C_p*T_WW+E_loss
Replacing the values given on the statement, we have:
1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C=1.8 kg/s*4,18 kJ/(kg°C)*T_WW+30 kJ/s
Solving for the temperature Tww, we have:
(1.0 kg/s*4,18 kJ/(kg°C)*25°C+0.8 kg/s*4,18 kJ/(kg°C)*75°C-30 kJ/s)/(1.8 kg/s*4,18 kJ/(kg°C))=T_WW
T_WW=43,23 °C
Have a nice day! :D