Answer:
We have 1.361 moles in the sample
Explanation:
Mass of iron = 76.02g
Molar mass of iron = 55.845 g/ mole ( This we can find in the periodic table, and menas that 1 mole of iron has a mass of 55.845 g).
To calculate the number of moles we will use following formula:
moles (n) = mass / molar mass
moles iron = 76.02g / 55.845 g/ mole
moles iron = 1.36127 moles
To use the correct number of significant digits we use the following rule for multiplication and division :
⇒ the number with the least number of significant figures decides the number of significant digits.
⇒76.02 has 4 digits ( 2 after the comma) and 55.845 has 5 digits (3 after the comma).
⇒ this means 1.361 moles
We have 1.361 moles in the sample
Answer:
electron-electron repulsion
Explanation:
When electrons add into valence shell of neutral elements, the element assumes a negative oxidation state. With this, the number of electrons having (-) charges will be larger than the number of protons having positive (+) charges. As a result, the extra electrons repel one another (i.e., like charges repel) and a larger radius is the result.
In contrast, when cations are formed, electrons are removed from the valence level (oxidation) producing an element having a greater number of protons than electrons. The larger number of protons will function to attract the electron cloud with a greater force that results in a contraction of atomic radius and a smaller spherical volume than the neutral unionized element.
To visualize, see attached chart that shows atomic and ionic radii before and after ionization of the elements.
Answer:
Some of the chemicals used to preserve food and give it color are sodium nitrate, sodium benzoate, and propionate
Explanation: