To bring something to a stop the same force that was applied to speed it up can be used to stop it. If a greater force is used it will stop quicker.
Answer:
<em>Element C will be best for a nuclear fission reaction</em>
Explanation:
<em>Nuclear fission is the splitting of the nucleus of a heavy atom by bombarding it with a nuclear particle. The reaction leads to the the atom splitting into two smaller elements and a huge amount of energy is liberated in the process.</em> For the reaction to be continuous in a chain reaction,<em> the best choice of element to use as fuel for the reaction should be the element whose nucleus also liberates a neutron particle after fission</em>. The neutron that is given off by other atoms in the reaction will then proceed to bombard other atoms of the element in the reaction, creating a cascade of fission and bombardment within the nuclear reactor.
TLDR: It will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
This is an example that requires you to investigate the properties that occur in electric generators; for example, hydroelectric dams produce electricity by forcing a coil to rotate in the presence of a magnetic field, generating a current.
To solve this, we need to understand the principles of electromotive forces and Lenz’ Law; changing the magnetic field conditions around anything with this potential causes an induced current in the wire that resists this change. This principle is known as Lenz’ Law, and can be described using equations that are specific to certain situations. For this, we need the two that are useful here:
e = -N•dI/dt; dI = ABcos(theta)
where “e” describes the electromotive force, “N” describes the number of loops in the coil, “dI” describes the change in magnetic flux, “dt” describes the change in time, “A” describes the area vector of the coil (this points perpendicular to the loops, intersecting it in open space), “B” describes the magnetic field vector, and theta describes the angle between the area and mag vectors.
Because the number of loops remains constant and the speed of the coils rotation isn’t up for us to decide, the only thing that can increase or decrease the emf is the change in magnetic flux, represented by ABcos(theta). The magnetic field and the size of the loop are also constant, so all we can control is the angle between the two. To generate the largest emf, we need cos(theta) to be as large as possible. To do this, we can search a graph of cos(theta) for the highest point. This occurs when theta equals 90 degrees, or a right angle. Therefore, the electromotive potential will reach a maximum when the angle between the area vector and the magnetic field vector are perpendicular to one another.
Hope this helps!
The one that accurately describes the products of a reaction is : B. new substances that are present at the end of a reaction
For example the process of photosynthesis transform CO2 and other nutrients into O2 and H2O
hope this helps
Answer:
17 °C
Explanation:
From specific Heat capacity.
Q = cm(t₂-t₁)................. Equation 1
Where Q = Heat absorb by the metal block, c = specific heat capacity of the metal block, m = mass of the metal block, t₂ = final temperature, t₁ = Initial temperature.
make t₁ the subject of the equation
t₁ = t₂-(Q/cm)............... Equation 2
Given: t₂ = 22 °C, Q = 5000 J, m = 4 kg, c = 250 J/kg.°c
Substitute into equation 2
t₁ = 22-[5000/(4×250)
t₁ = 22-(5000/1000)
t₁ = 22-5
t₁ = 17 °C