Answer:
98N and 147N
Explanation:
We have the following information:

We can find the static fricton force as follow,

Where N is the normal force (mg)

Static friction force at 147N is greater than the force applied hence body does not move.

Hello!
A stretched spring has 5184 J of elastic potential energy and a spring constant of 16,200 N/m. What is the displacement of the spring ?
Data:



For a spring (or an elastic), the elastic potential energy is calculated by the following expression:

Where k represents the elastic constant of the spring (or elastic) and x the deformation or displacement suffered by the spring.
Solving:









Answer:
The displacement of the spring = 0.8 m
_______________________________
I Hope this helps, greetings ... Dexteright02! =)
In mechanics, the normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact, of the contact </span>force<span> exerted on an object . We calculate as follows:
</span>∑F along x = 0 = F - Fn
<span>
Fn = F = mg = 7.52(9.81) = 73.77 N <------OPTION B</span>
Answer:
a) Em= K +U, b) Em= K
Explanation:
The system in this case is formed by the mobilizes and the hill.
Let's write the expressions correctly and completely.
a) When the car moves in the path, the mechanical energy is the siua of the kinetic energy of the car and the potential energy of the car when going up the hill.
Em = K + U
be) when the car moves in the flat part all the mechanical energy is formed by its kinetic energy that is calculated with the mass and speed of the car
Em = K
c) When the car goes up the hill the energy the mechanical energy is conserved, but part of the kinetic energy is transformed into potential energy.
Answer:
1.89*10⁶J
Explanation:
because 4500kg * 42m*10m/s² is 1890000J