Given :
Initial velocity, u = 12.5 m/s.
Height of camera, h = 64.3 m.
Acceleration due to gravity, g = 9.8 m/s².
To Find :
How long does it take the camera to reach the ground.
Solution :
By equation of motion :

Putting all given values, we get :

t = 2.56 and t = −5.116.
Since, time cannot be negative.
t = 2.56 s.
Therefore, time taken is 2.56 s.
Hence, this is the required solution.
It would be B since it starts with the solar energy which is converted to electricity with the solar panels, which then creates mechanical energy for the fans blades to move and sound for the radio.
Hope that helps :)
Answer:
Newton's second law of motion
Explanation:
Newton's second law of motion can be stated
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
in another form,
Force = mass * acceleration
Answer:
a) 1.2*10^{-3}cos(1.25t)
b) 0.49mV
Explanation:
a) The coil rotates periodically with period T. Hence, we can write the variation of the magnetic flux with a sinusoidal function, and with max flux NAB. Thus, we have that:

where we have used the values given by the information of the problem for N B and A.
b)
the emf is given by:

hope this helps!!