Hi there!
The maximum deformation of the bumper will occur when the car is temporarily at rest after the collision. We can use the work-energy theorem to solve.
Initially, we only have kinetic energy:

KE = Kinetic Energy (J)
m = mass (1060 kg)
v = velocity (14.6 m/s)
Once the car is at rest and the bumper is deformed to the maximum, we only have spring-potential energy:

k = Spring Constant (1.14 × 10⁷ N/m)
x = compressed distance of bumper (? m)
Since energy is conserved:

We can simplify and solve for 'x'.

Plug in the givens and solve.

Answer:
The pressure is 
The temperature is 
Explanation:
Generally Gibbs free energy is mathematically represented as

Where E is the enthalpy
PV is the pressure volume energy (i.e PV energy)
S is the entropy
T is the temperature
For stability to occur the Gibbs free energy must be equal to zero
Considering Diamond
So at temperature of T = 300 K

making P the subject

Now substituting 300 K for T , 2900 J for E ,
for V and
for S


The negative sign signifies the direction of the pressure
Given that 
making T the subject

Substituting into the equation


Answer:
19.21ms-¹
Explanation:
that is the solution above
A. electrons are negatively charged outside nucleus