Answer:
MIXTURE
Explanation:
A mixture is a substance composed of a combination of other different substances. These component(s) of a mixture are physically combined, meaning that there is no chemical linkage between the individual components/constituents of a mixture.
This is the case of the gravel described in this question. The components of gravel can be separated using physical means because they are not chemically bonded to one another, hence, no chemical reactions are needed to separate different parts of gravel into pure substances. This makes gravel a MIXTURE.
Answer:
A. 0.90 L.
Explanation:
- NaOH solution will react with H₂SO₄ according to the balanced reaction:
<em>H₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O.</em>
<em>1.0 mole of H₂SO₄ reacts with 2.0 moles of NaOH.</em>
- For NaOH to react completely with H₂SO₄, the no. of millimoles should be equal.
<em>∴ (MV) NaOH = (xMV) H₂SO₄.</em>
x for H₂SO₄ = 2, due to having to reproducible H⁺ ions.
<em>∴ V of NaOH = (xMV) H₂SO₄/ M of NaOH</em> = 2(0.6 L)(3.0 M)/(4.0 M) = <em>0.90 L.</em>
Answer:
a) reaction with oxygen
2mg +o2---------2mgo
b) Agno3+NaCl ----------AgCl+NaNo3
Answer:
0.0010 mol·L⁻¹s⁻¹
Explanation:
Assume the rate law is
rate = k[A][B]²
If you are comparing two rates,
![\dfrac{\text{rate}_{2}}{\text{rate}_{1}} = \dfrac{k_{2}\text{[A]}_2[\text{B]}_{2}^{2}}{k_{1}\text{[A]}_1[\text{B]}_{1}^{2}}= \left (\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}}\right ) \left (\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}\right )^{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7Brate%7D_%7B2%7D%7D%7B%5Ctext%7Brate%7D_%7B1%7D%7D%20%3D%20%5Cdfrac%7Bk_%7B2%7D%5Ctext%7B%5BA%5D%7D_2%5B%5Ctext%7BB%5D%7D_%7B2%7D%5E%7B2%7D%7D%7Bk_%7B1%7D%5Ctext%7B%5BA%5D%7D_1%5B%5Ctext%7BB%5D%7D_%7B1%7D%5E%7B2%7D%7D%3D%20%5Cleft%20%28%5Cdfrac%7B%5Ctext%7B%5BA%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BA%5D%7D_%7B1%7D%7D%5Cright%20%29%20%5Cleft%20%28%5Cdfrac%7B%5Ctext%7B%5BB%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BB%5D%7D_%7B1%7D%7D%5Cright%20%29%5E%7B2%7D)
You are cutting each concentration in half, so
![\dfrac{\text{[A]}_{2}}{\text{[A]}_{1}} = \dfrac{1}{2}\text{ and }\dfrac{\text{[B]}_{2}}{\text{[B]}_{1}}= \dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Ctext%7B%5BA%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BA%5D%7D_%7B1%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%5Ctext%7B%20and%20%7D%5Cdfrac%7B%5Ctext%7B%5BB%5D%7D_%7B2%7D%7D%7B%5Ctext%7B%5BB%5D%7D_%7B1%7D%7D%3D%20%5Cdfrac%7B1%7D%7B2%7D)
Then,

Answer:
Then, at some point, these higher energy electrons give up their "extra" energy in the form of a photon of light, and fall back down to their original energy level.
Explanation:
When properly stimulated, electrons in these materials move from a lower level of energy up to a higher level of energy and occupy a different orbital.