Correct Answer is 1 i.e. Gamma rays—2 and radio waves—3
Reason:
1) In a hypernova, star<span> as similar to </span>nuclear fusion<span> converts lighter elements into heavy elements. If fusion is not capable of generating enough pressure to counteract gravity, star immediately collapses to form a </span>black hole<span>. During this process, energy will be released, along the axis of rotation to form </span>gamma-ray burst. Such gamma-ray burst was first detected using <span>Fermi Gamma-ray Space Telescope. Thus, gamma-ray is capable of providing information of gravity fields.
2) Radiowaves are capable of inducing transitions that requires less energies. These transition includes nuclear excitation and electron excitation (in rotational energy level). Depending upon the value to Jmax, it is possible to determine the temperature and </span><span>heat released by astronomical objects</span><span>
</span>
Answer:
See explaination
Explanation:
The Cys3-cys97 and cys21-cys142 disulfides restrict the unfolded state of lysozyme enzyme to a class of more compact structures with a less exposed hydrophobic surface, compared to the unfolded states of reduced/non-crosslinked lysozyme. there are 2 major factors which lead to the stabilization of lysozyme due to disulfide bonds-
1- increase in the loop size due to the formation of disulfide bonds that leads to an increase in the even entropic effect.
2- the region formed should be flexible. the strain energy due to the formation of the disulfide bond is lower.
cys21-cys142 has a higher Tm than the cys3-cys97 because it involves flexible parts of the molecule. 21 and 142 residues are located on opposite sides of the active-site cleft where significant hinge-bending motion is seen. this introduces minimal strain in the protein.
You'll want to add three amounts of heat.
(1) Specific heat of lowering the temperature from -135°C to the melting point -114°C
(2) Latent heat of fusion/melting
(3) Specific heat of elevating the temperature from -114°C to -50°C
(1) E = mCΔT = (25 g)(0.97 J/g·°C)(1 kJ/1000 J)(-114 - -135) = 0.509 kJ
(2) E = mΔH = (25 g)(5.02 kJ/mol)(1 mol/46.07 g ethanol) = 2.724 kJ
(3) E = mCΔT = (25 g)(2.3 J/g·°C)(1 kJ/1000 J)(-50 - -114) = 3.68 kJ
<em>Summing up all energies, the answer is 6.913 kJ.</em>
Answer: They can be separated by physical processes.
Explanation: A mixture is made up of two or more substances that are not chemically combined and can be easily separated into its constituents by physical methods.
B. a circle graph
circle graphs are the best to show percentages because they’re very easy to look at and get info from