Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
potassium reacts the most vigorously.
Answer:
0.175mol
Explanation:
Mole of a substance can be calculated using the formula as follows:
number of moles (n) = mass (m) ÷ molar mass (MM)
According to this question, there are 4.2g of Magnesium (Mg).
Molar mass of Magnesium = 24g/mol, hence, the number of moles of 4.2g of Mg is as follows:
n = 4.2g ÷ 24g/mol
n = 0.175mol
Explanation:
The reaction between calcium hydroxide and nitric acid is as follows.

Number of reactant atoms are as follows.
Number of product atoms are as follows.
To balance the given chemical equation, multiply
by 2 on reactant side and multiply
by 2 on the product side.
Therefore, the balanced chemical equation will be as follows.

Answer:
No
Explanation:
loss of electron doesn't affect the element.
only change in proton number can, as we notice in nuclear chemistry.
please mark brainliest