1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
3 years ago
5

34. What is the frequency of a light whose wavelength is 660 nm? ​

Chemistry
1 answer:
Oksanka [162]3 years ago
8 0
454 teraHz I think, tell me if this is wrong
You might be interested in
Please someone solve this and tell me how you solve it
lianna [129]

Answer:

Supersaturated.

Explanation:

Hello there!

In this case, according to this solubility chart, we infer that for NH3, the solubility starts at 90 grams of NH3 that are soluble in 100 g of water at 0 °C and ends in about 8 g in 100 g of water at 100 °C for a saturated solution.

However, since we are asked for the solubility of NH3 at 20 °C, we can see that, according to the table and the curve for NH3, about 52 g of NH3 are soluble in 100 g of water; thus, for the given 60 g of NH3, we will say that 8 grams will remain undissolved, and therefore, this solution will be supersaturated.

Regards!

8 0
3 years ago
To begin the experiment, 1.11g of methane CH4is burned in a bomb calorimeter containing 1000 grams of water. The initial tempera
navik [9.2K]
1. CH4 + 2O2 → CO2 + 2H2O
2. 10.80 degrees celsius
3. 45,187 J
4. 7,506 J
<span>5. 52,693 J </span>
6 0
3 years ago
Consider the second-order reaction:
kirza4 [7]

Answer:

Initial concentration of HI is 5 mol/L.

The concentration of HI after 4.53\times 10^{10} s is 0.00345 mol/L.

Explanation:

2HI(g)\rightarrow H_2(g)+I_2(g)&#10;

Rate Law: k[HI]^2&#10;

Rate constant of the reaction = k = 6.4\times 10^{-9} L/mol s

Order of the reaction = 2

Initial rate of reaction = R=1.6\times 10^{-7} Mol/L s

Initial concentration of HI =[A_o]

1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2

[A_o]=5 mol/L

Final concentration of HI after t = [A]

t = 4.53\times 10^{10} s

Integrated rate law for second order kinetics is given by:

\frac{1}{[A]}=kt+\frac{1}{[A_o]}

\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}

[A]=0.00345 mol/L

The concentration of HI after 4.53\times 10^{10} s is 0.00345 mol/L.

5 0
3 years ago
How many moles of MgCl2 are there in 343 g of the compound?
mash [69]

The answer is 3.592?

6 0
3 years ago
Given the chemical equation: 2 Pb + O2 → 2 PbO, if 51.8 grams of Pb are formed in this reaction, then 8.00 grams of O2 must have
Nutka1998 [239]

Answer:

If 51.8 of Pb is reacting, it will require 4.00 g of O2

If 51.8 g of PbO is formed, it will require 3.47 g of O2.

Explanation:

Equation of the reaction:

2 Pb + O2 → 2 PbO

From the equation of reaction, 2 moles of lead metal, Pb, reacts with 1 mole of oxygen gas, O2, to produce 2 moles of lead (ii) oxide, PbO

Molar mass of Pb = 207 g

Molar mass of O2 = 32 g

Molar mass of PbO = 207 + 32 = 239 g

Therefore 2 × 207 g of Pb reacts with 32 g of O2 to produce 2 × 239 g of PbO

= 414 g of Pb reacts with 32 g of O2 to produce 478 g of PbO

Therefore, formation of 51.8 g of PbO will require (32/478) × 51.8 of O2 = 3.47 g of O2.

If 51.8 of Pb is reacting, it will require (32/414) × 51.8 g of O2 = 4.00 g of O2

7 0
3 years ago
Other questions:
  • How do aromatic hydrocarbons differ from alkenes?
    13·2 answers
  • List 3 other life processes that amoeba must carry out
    15·1 answer
  • PLZZ HELP!!!
    7·1 answer
  • Write the systematic names of the following​
    11·1 answer
  • Urea (CH4N2O) is a common fertilizer that can be synthesized by the reaction of ammonia (NH3) with carbon dioxide as follows:
    6·1 answer
  • Can someone please help me, i'll give you a 5 star rating and brainliest answer​
    8·1 answer
  • Generally the periodic trends of the d and f block is similar to the main group elements trends.
    14·1 answer
  • Why do igneous rocks not contain fossils in them ?
    14·1 answer
  • Can someone help a dude out im stuck on this question
    10·1 answer
  • Which models of the atom from task 1 are not supported by Rutherford’s experimental evidence? For each of these models, explain
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!