Answer:
u need to subtract the pool from the whole area to get the answer
the probability that if you pick only one, it's defective, is 250/6700
Therefore, the probability that one is not defective is 6450/6700
a. You want all 4 to not be defective: (6450/6700)^4
b. all 100 have to be not defective: (6450/6700)^100
If you type this into a calculator, you will get about 0.022, so a probability of 2 % that all of them are not defective. As this is a very small probability, the outlet should plan with returned tires.
well, this is just a matter of simple unit conversion, so let's recall that one revolution on a circle is just one-go-around, radians wise that'll be 2π, and we also know that 1 minute has 60 seconds, let's use those values for our product.
![\cfrac{300~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{2\pi ~rad}{~~\begin{matrix} r \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }\cdot \cfrac{~~\begin{matrix} min \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~ }{60secs}\implies \cfrac{(300)(2\pi )rad}{60secs}\implies 10\pi ~\frac{rad}{secs}\approx 31.42~\frac{rad}{secs}](https://tex.z-dn.net/?f=%5Ccfrac%7B300~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B2%5Cpi%20~rad%7D%7B~~%5Cbegin%7Bmatrix%7D%20r%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%5Ccdot%20%5Ccfrac%7B~~%5Cbegin%7Bmatrix%7D%20min%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%20%7D%7B60secs%7D%5Cimplies%20%5Ccfrac%7B%28300%29%282%5Cpi%20%29rad%7D%7B60secs%7D%5Cimplies%2010%5Cpi%20~%5Cfrac%7Brad%7D%7Bsecs%7D%5Capprox%2031.42~%5Cfrac%7Brad%7D%7Bsecs%7D)
I did this but im not very good at it :( but i think the answer is either A or D sorry if im wrong :(
Answer:
170929
Step-by-step explanation: