Answer:ans is b solids
Explanation: this is because molecules in a solid medium re much closer together than those in liquid or gas allowing sound waves to travel quickly through it
Answer:

Explanation:
Parameters given:
Charge of object, q = 5 mC = 
Acceleration of object, a = 
Mass of object, m = 2.0 g
The Electric field exerts a particular force on the object, causing it to accelerate (Electrostatic force).
We know that Electrostatic force, F, is given in terms of Electric field, E, as:
F = qE
This means that the object exerts a force of -qE on the Electric force (Action with equal and opposite reaction).
The object also has a force, F, due to its acceleration a. This force is the product of its mass and acceleration. Mathematically:
F = ma
Equating the two forces of the object, we get:
-qE = ma
=> 
Solving for E, we have:

The magnitude will be:

The electric field has a magnitude of 0.002 N/C.
Answer:
ΔT = 40.91 °C
Explanation:
First we find the kinetic energy of one hit to the nail:
K.E = (1/2)mv²
where,
K.E = Kinetic energy = ?
m = mass of hammer = 1.6 kg
v = speed of hammer = 7.7 m/s
Therefore,
K.E = (1/2)(1.6 kg)(7.7 m/s)²
K.E = 47.432 J
Now, for 10 hits:
K.E = (10)(47.432 J)
K.E = 474.32 J
Now, we calculate the heat energy transferred (Q) to the nail. As, it is the 59% of K.E. Therefore,
Q = (0.59)K.E
Q = (0.59)(474.32 J)
Q = 279.84 J
The change in energy of nail is given as:
Q = mCΔT
where,
m = mass of nail = 7.6 g = 0.0076 kg
C = specific heat capacity of aluminum = 900 J/kg.°C
ΔT = Increase in temperature = ?
Therefore,
279.84 J = (0.0076 kg)(900 J/kg.°C)ΔT
ΔT = (279.84 J)/(6.84 J/°C)
<u>ΔT = 40.91 °C</u>
Should be true.
it's been awhile since I was learning this
Answer:
0.26 m/s^2
Explanation:
We're asked to find the acceleration of a body given the net force acting on it and it's mass.
To do this, we use Newton's second law.