Answer:

Explanation:
<u>Average Speed
</u>
If an object travels a distance d in a time t regardless of the direction, the average speed is the quotient of the distance over the time:

It's known a person runs d=15 kilometers in t=2 hours, thus his/her average speed is:

Calculating:

Answer:
Circular wave
Explanation:
Circular waves are special types of mechanical waves. They all travel through a material medium or some times a vacuum.
An example of such wave is a ripple caused by dropping a stone in a tank of water.
A wave that propagates in circular form on the surface of water falls into this category.
Answer:
potential energy = mgh
= 400÷1000 × 10× 4÷100
= 0.4 × 10 × 0.04
=4/10 ×10×4/100
= 4/10 × 4/10
=16/100
= 0.16 joules
m1 (400) stretches 4cm
m1 (100g) stretches 1cm
so, m2(800g) stretches 8 cm
potential energy of m2 = mgh
= 800/1000 ×10×8/100
= 0.8 × 0.8
=8/10 ×8/10
= 64/100
=0.64 joules
Ratio of s1 to s2
16/100 ÷ 64/100
= 1:4 ( answer)
Answer:

Explanation:
One of the first propulsion characteristics given in the example is that all engines are equal.
In this way if we have 4 engines running at the same time, it means that its capacity is 100%.
Under this premise, if 100% is found, the Jet is capable of reaching a speed of 8.7m / s ^ 2.
However, the question is, what would happen if 2.4 "Engines" now work.
To do this then we make a simple equivalence,
If 4 engines is the equivalent of 100%, when would it be 2.4 engines?

In this way it would mean that the body could be driven to 60% of its total.
So

Answer:
Explanation:
Here's the info we have:
initial velocity is 20 m/s;
final velocity is our unknown;
displacement is -10.2 m; and
acceleration due to gravity is -9.8 m/s/s. Using the one-dimensional equation
v² = v₀² + 2aΔx and filling in accordingly to solve for v:
Rounding to the correct number of sig fig's to simplify:
to get
v =
If you don't round like that, the velocity could be 24, or it could also be 24.5 depending on how your class is paying attention to sig figs or if you are at all.
So either 20 m/s or 24 m/s