Answer:
B
Explanation:
The whole thing is talking about the damage runoffs have done that is equal to answer B.
Answer:
Neither.
Explanation:
When an electron is released from rest, in an uniform electric field, it will accelerate moving in a direction opposite to the field (as the field has the direction that it would take a positive test charge, and the electron carries a negative charge).
It will move towards a point with a higher potential, so its kinetic energy will increase, while its potential energy will decrease:
⇒ ΔK + ΔU = 0 ⇒ ΔK = -ΔU = - (-e*ΔV)
As ΔV>0, we conclude that the electric potential energy decreases while the kinetic energy increases in the same proportion, in order to energy be conserved, in absence of non-conservative forces.
All stars in a stellar cluster have roughly the same distance.
<h3>What coloration are celebrity clusters?</h3>
Open clusters have a tendency to be blue in color. They frequently include glowing gas and dust. The stars in an open cluster are young stars that all formed from the equal nebula. These warm blue stars are in an open cluster known as the Jewel Bo
<h3>Are stars in the identical cluster?</h3>
Though stellar associations are grouped in with megastar clusters, they're pretty a bit different. "Stellar associations are companies of tens to hundreds of stars that have similar a while and metallicities, and are moving in roughly the equal direction within the galaxy, but are no longer gravitationally bound," Geller said.
Learn more about star cluster here:
<h3>
brainly.com/question/20326847</h3><h3 /><h3>#SPJ4</h3>
Answer:
-2.26×10^-4 radians
Explanation:
The solution involves a right angle triangle
Length is z while the horizontal is the height x
X^2+ 100^2=z^2
Taking the derivatives
2x(dx/dt)=Z^2(dz/dt)
Specific moments = Z= 200 ,X= 100sqrt3 and dx/dt= 11
dz/dt= 1100sqrt3/200 = 9.53
Sin a= 100/a
Taking derivatives in terms of t
Cos a(da/dt)=100/z^2 dz/dt
a= 30°
Cos (30°)da/dt= (-100/40000×9.5)
a= -2.26×10^-4radians
Answer:
adapted from NOVA, a team of historians, engineers, and trade experts recreate a medieval throwing machine called a trebuchet. To launch a projectile, a trebuchet utilizes the transfer of gravitational potential energy into kinetic energy. A massive counterweight at one end of a lever falls because of gravity, causing the other end of the lever to rise and release a projectile from a sling. As part of their design process, the engineers use models to help evaluate how well their designs will work.
Explanation: