1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudik [331]
3 years ago
12

During a care on level ground, Andra runs with an average velocity of 6.02 m/s to the East. What distance does Andra cover in 13

7 seconds?
Physics
1 answer:
garik1379 [7]3 years ago
4 0

Answer:

The distance covered is: 824.74 meters

Explanation:

Use the formula for velocity (v) as the distance (d) covered over the time (t) it took:

v = d / t

in our case:

6.02 m/s = d / 137 s

d = 6.02 * 137 = 824.74 meters

You might be interested in
510 g squirrel with a surface area of 935 cm2 falls from a 4.8-m tree to the ground. Estimate its terminal velocity. (Use the dr
Yuki888 [10]

Answer:

The terminal velocity is v_t  =17.5 \ m/s

Explanation:

From the question we are told that

       The mass of the squirrel is  m_s  =  50\ g  =  \frac{50}{1000} =  0.05 \  kg

      The surface area is   A_s =  935 cm^2  =  \frac{935}{10000} = 0.0935 \ m^2

       The height of fall is  h =4.8 m

        The length of the prism is l =  23.2 = 0.232 \ m

          The width of the prism is w =  11.6 =  0.116 \ m

 

The terminal velocity is mathematically represented as

       v_t  =  \sqrt{\frac{2 * m_s *  g }{\dho_s * C  * A } }

Where \rho  is the density of a rectangular prism with a constant values of \rho  =  1.21 \ kg/m^3

            C is the drag coefficient for a horizontal skydiver with a value = 1

            A  is the area of the prism the squirrel is assumed to be which is mathematically represented as

      A =  0.116 * 0.232

       A =  0.026912 \ m^2

 substituting values

      v_t  =  \sqrt{\frac{2 * 0.510 *  9.8 }{1.21 * 1  * 0.026912 } }

     v_t  =17.5 \ m/s

       

7 0
4 years ago
A plane is landing at an airport. The plane has a massive amount of kinetic energy due to it's motion. When the plane lands, it
marshall27 [118]

Answer:

A. The brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes

Explanation:

Based on the law of conservation of energy, the brakes used a coil system to convert the kinetic energy into potential energy stored in the brakes.

The law of conservation of energy states that energy is neither created nor destroyed in a system but it is transformed from one form to another.

As the airplane slows down, the kinetic energy which is presented in the motion of the plane is gradually converted to potential energy.

The potential energy is the energy due to the position of a body.

8 0
3 years ago
Two cylinders each contain 0.30 mol of a diatomic gas at 320 K and a pressure of 3.0 atm. Cylinder A expands isothermally and cy
Svetllana [295]

Answer :

(a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

Explanation :

Given that,

Number of mole n = 0.30 mol

Initial temperature = 320 K

Pressure = 3.0 atm

Final pressure = 1.0 atm

We need to calculate the initial volume

Using formula of ideal gas

P_{1}V_{1}=nRT

V_{1}=\dfrac{nRT}{P_{1}}

Put the value into the formula

V_{1}=\dfrac{0.30\times8.314\times320}{3.039\times10^{5}}

V_{1}=2.62\times10^{-3}\ m^3

(a). We need to calculate the final temperature of the gas in the cylinder A

Using formula of ideal gas

In isothermally, the temperature is not change.

So, the final temperature of the gas in the cylinder A is 320 K.

(b). We need to calculate the final temperature of the gas in the cylinder B

Using formula of ideal gas

T_{2}=T_{1}\times(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}-1}

Put the value into the formula

T_{2}=320\times(\dfrac{3}{1})^{\frac{1}{1.4}-1}

T_{2}=233.7\ K

(c). We need to calculate the final volume of the gas in the cylinder A

Using formula of volume of the gas

P_{1}V_{1}=P_{2}V_{2}

V_{2}=\dfrac{P_{1}V_{1}}{P_{2}}

Put the value into the formula

V_{2}=\dfrac{3\times2.62\times10^{-3}}{1}

V_{2}=0.00786\ m^3

V_{2}=7.86\times10^{-3}\ m^3

(d). We need to calculate the final volume of the gas in the cylinder B

Using formula of volume of the gas

V_{2}=V_{1}(\dfrac{P_{1}}{P_{2}})^{\frac{1}{\gamma}}

V_{2}=2.62\times10^{-3}\times(\dfrac{3}{1})^{\frac{1}{1.4}}

V_{2}=0.0057\ m^3

V_{2}=5.7\times10^{-3}\ m^3

Hence, (a). The final temperature of the gas in the cylinder A is 320 K.

(b). The final temperature of the gas in the cylinder B is 233.7 K.

(c). The final volume of the gas in the cylinder A is 7.86\times10^{-3}\ m^3

(d). The final volume of the gas in the cylinder B is 5.7\times10^{-3}\ m^3

6 0
3 years ago
Miles is camping in Glacier National Park. In the midst of a glacier canyon,
valentina_108 [34]

Answer:

t=1.623 sec

Explanation:

The distance traveled before the echo is had is:

distance=2d, d=280\ m\\\\=280\times 2\\\\=560 \ m

Given the speed of sound as v=345m/s, we use the speed equation to solve for t:

v=\frac{d}{t}\\\\345\ m/s=\frac{560m}{t}\\\\t=\frac{560}{360}\\\\=1.623 \ s

Hence, it takes 1.623 seconds to hear the echo.

8 0
3 years ago
A car accelerates at a rate of 13m/s^2[S]. If the car's initial velocity is 120km/h[N]. What will its final velocity be in m/s,
Delvig [45]

Answer:

the final velocity of the car is 59.33 m/s [N]

Explanation:

Given;

acceleration of the car, a = 13 m/s²

initial velocity of the car, u = 120 km/h = 33.33 m/s

duration of the car motion, t = 2 s

The final velocity of the car in the same direction is calculated as follows;

v = u + at

where;

v is the final velocity of the car

v = 33.33 + (13 x 2)

v = 59.33 m/s [N]

Therefore, the final velocity of the car is 59.33 m/s [N]

6 0
3 years ago
Other questions:
  • Elements from opposite sides of the periodic table tend to form ________.
    11·1 answer
  • g (12 points) The time between incoming phone calls at a call center is a random variable with exponential density p(x) = 1 r e
    12·1 answer
  • Which process do plants use to turn sunlight into food energy? photosynthesis cellular respiration transpiration evaporation
    5·2 answers
  • Book sliding across a frictionless table would never stop moving, even though there is
    11·1 answer
  • What will happen when the sun blows up?
    5·2 answers
  • it is idea being transmitted by the sender to the receiver. it includes three aspects-content, structure, and style​
    14·1 answer
  • Last night Mookie Betts hit a baseball at 32.5 m/s at a 45° angle. Betts
    15·1 answer
  • Which of the following has the greatest momentum?
    6·1 answer
  • What is so soothing about the ocean? And why are some people afraid of the ocean?
    9·2 answers
  • You are conducting an experiment inside an elevator that can move in a vertical shaft. A load is hung vertically from the ceilin
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!