Distance of lake a is 200 km at 20 degree north of east
distance between lake a and b is 230 km at 30 degree west of north
now the distance between base and lake b is given as
given that
now the total distance is
now the magnitude of the distance is given as
also the direction is given as
<em>so it is 277.4 km at 74.7 degree North of East</em>
The resultant force on the positive charge is mathematically given as
X=40N
<h3>What is the magnitude of the electrostatic force on the negative charge?</h3>
Question Parameters:
Three-point charges, two positive and one negative, each having a magnitude of 20
Generally, the -ve charge is mathematically given as
Q+=X
Therefore
X=40N
For more information on Force
brainly.com/question/26115859
You should note that the melting point of mercury is -38.83°C, while the boiling point is at 356.7°C. Then, that means that there is no latent heat involved here. We only compute for the sensible heat.
ΔH = mCpΔT
The Cp of mercury is 0.14 J/g·°C
Thus,
ΔH = (411 g)(0.14 J/g·°C)(88 - 12°C)
<em>ΔH = 4,373.04 J</em>
Answer:
63.9 m/s
Explanation:
Parameters given:
Mass of small car, m = 1200 kg
Mass of SUV, M = 4000 kg
Speed of SUV, V = 35 m/s
Their kinetic energy of the small car is equal to the kinetic energy of the SUV, hence:
0.5 * m * v² = 0.5 * M * V²
=> 0.5 * 1200 * v² = 0.5 * 4000 * 35²
600 * v² = 2450000
v² = 2450000/600
v² = 4083.3
=> v = 63.9 m/s
The speed of the small car is 63.9 m/s.
Answer:
The energy stored is: 62.5 Joules
Explanation:
Given
--- spring constant
--- stretch
Required
The amount of energy
This is calculated as: